Introduction to Digital Signal Processing' covers the basic theory and practice of digital signal processing (DSP) at an introductory level. As with all volumes in the Essential Electronics Series, this book retains the unique formula of minimal mathematics and straightforward explanations. The author has included examples throughout of the standard software design package, MATLAB and screen dumps are used widely throughout to illustrate the text. Ideal for students on degree and diploma level courses in electric and electronic engineering, 'Introduction to Digital Signal Processing' contains numerous worked examples throughout as well as further problems with solutions to enable students to work both independently and in conjunction with their course. Assumes only minimum knowledge of mathematics and electronics. Concise and written in a straightforward and accessible style. Packed with worked examples, exercises and self-assesment questions.
Author(s): Robert Meddins
Series: Essential electronics series
Publisher: Newnes
Year: 2000
Language: English
Commentary: 93314
Pages: 175
City: Oxford; Boston
Tags: Приборостроение;Обработка сигналов;
Introduction to Digital Signal Processing......Page 4
Copyrigth Page......Page 5
Contents......Page 8
Preface......Page 12
Acknowledgements......Page 13
1.2 Analogue signal processing......Page 14
1.3 An alternative approach......Page 15
1.4 The complete DSP system......Page 16
1.7 The running average filter......Page 20
1.8 Representation of processing systems......Page 22
1.10 Feedback (or recursive) filters......Page 23
1.11 Self-assessment test......Page 25
1.13 Problems......Page 26
2.2 Signal types......Page 29
2.3 The representation of discrete signals......Page 30
2.5 Recap......Page 34
2.6 The z-transform......Page 35
2.9 The transfer function for a discrete system......Page 37
2.10 Self-assessment test......Page 41
2.11 MATLAB and signals and systems......Page 42
2.12 Recap......Page 43
2.13 Digital signal processors and the z-domain......Page 44
2.14 FIR filters and the z-domain......Page 46
2.15 IIR filters and the z-domain......Page 47
2.16 Self-assessment test......Page 51
2.18 Chapter summary......Page 52
2.19 Problems......Page 53
3.2 Poles, zeros and the s-plane......Page 54
3.3 Pole-zero diagrams for continuous signals......Page 55
3.5 Recap......Page 58
3.6 From the s-plane to the z-plane......Page 59
3.7 Stability and the z-plane......Page 60
3.8 Discrete signals and the z-plane......Page 62
3.9 Zeros......Page 65
3.10 The Nyquist frequency......Page 67
3.12 The relationship between the Laplace and z-transform......Page 68
3.13 Recap......Page 70
3.14 The frequency response of continuous systems......Page 71
3.15 Self-assessment test......Page 74
3.16 The frequency response of discrete systems......Page 75
3.17 Unstable systems......Page 80
3.19 Recap......Page 81
3.20 Chapter summary......Page 82
3.21 Problems......Page 83
4.2 Filter basics......Page 84
4.4 The direct design of IIR filters......Page 86
4.5 Self-assessment test......Page 91
4.8 The bilinear transform......Page 92
4.10 The impulse-invariant method......Page 97
4.12 Pole-zero mapping......Page 102
4.13 Self-assessment test......Page 104
4.15 Classic analogue filters......Page 105
4.16 Frequency transformation in the s-domain......Page 107
4.17 Frequency transformation in the z-domain......Page 108
4.19 Recap......Page 110
4.20 Practical realization of IIR filters......Page 111
4.22 Problems......Page 113
5.3 Phase-linearity and FIR filters......Page 115
5.4 Running average filters......Page 119
5.5 The Fourier transform and the inverse Fourier transform......Page 120
5.6 The design of FIR filters using the Fourier transform or 'windowing' method......Page 123
5.7 Windowing and the Gibbs phenomenon......Page 129
5.9 Self-assessment test......Page 131
5.11 The discrete Fourier transform and its inverse......Page 132
5.12 The design of FIR filters using the 'frequency sampling' method......Page 137
5.15 The fast Fourier transform and its inverse......Page 141
5.16 MATLAB and the FFT......Page 145
5.18 A final word of warning......Page 147
5.20 Problems......Page 148
Answers to self-assessment tests and problems......Page 150
References and bibliography......Page 166
Appendix A: Some useful Laplace and z-transforms......Page 168
Appendix B: Frequency transformations in the s- and z - domains......Page 169
Index......Page 172