This book is a systematic introduction to analytic methods in number theory, and assumes as a prerequisite only what is taught in a standard undergraduate course. The author aids readers by including a section of bibliographic notes and detailed exercises at the end of each chapter. Tenenbaum has emphasized methods rather than results, so readers should be able to tackle more advanced material than is included here. Moreover, he covers developments on many new and unpublished topics, such as: the Selberg-Delange method; a version of the Ikehara-Ingham Tauberian theorem; and a detailed exposition of the arithmetical use of the saddle-point method.
Author(s): Gérald Tenenbaum
Series: Cambridge Studies in Advanced Mathematics 46
Publisher: Cambridge University Press
Year: 1995
Language: English
Pages: 466
INTRODUCTION TO ANALYTIC AND PROBABILISTIC NUMBER THEORY......Page 1
Half-title......Page 2
Cambridge Studies in Advnaced Mathematics......Page 3
Title Page......Page 4
Copyright Page......Page 5
Dedication......Page 6
Contents......Page 8
Preface......Page 14
Notation......Page 16
Part I: Elementary methods......Page 18
§ 0.1 Abel summation......Page 20
§ 0.2 The Euler–Maclaurin summation formula......Page 22
Exercises......Page 24
§ 1.1 Introduction......Page 26
§ 1.2 Chebyshev's estimates......Page 27
§ 1.3 p-adic valuation of n!......Page 30
§ 1.4 Mertens' first theorem......Page 31
§ 1.5 Two new asymptotic formulae......Page 32
§ 1.6 Mertens' formula......Page 34
§ 1.7 Another theorem of Chebyshev......Page 36
Exercises......Page 37
§ 2.2 Examples......Page 40
§ 2.3 Formal Dirichlet series......Page 42
§ 2.4 The ring of arithmetic functions......Page 43
§ 2.5 The Möbius inversion formulae......Page 45
§ 2.6 Von Mangoldt's function......Page 47
§ 2.7 Euler's totient function......Page 49
Notes......Page 50
Exercises......Page 51
§ 3.2 Dirichlet's problem and the hyperbola method......Page 53
§ 3.4 Euler's totient function......Page 56
§ 3.5 The functions ω and Ω......Page 58
§ 3.6 Mean value of the Möbius function and the summatory functions of Chebyshev......Page 59
§ 3.7 Squarefree integers......Page 63
§ 3.8 Mean value of a multiplicative function with values in [0,1]......Page 65
Notes......Page 67
Exercises......Page 70
§ 4.1 The sieve of Eratosthenes......Page 73
§ 4.2 Brun's combinatorial sieve......Page 74
§ 4.3 Application to prime twins......Page 77
§ 4.4 The large sieve—analytic form......Page 79
§ 4.5 The large sieve—arithmetic form......Page 85
§ 4.6 Applications......Page 88
Notes......Page 91
Exercises......Page 93
§ 5.1 Introduction and definitions......Page 97
§ 5.2 The function τ(n)......Page 98
§ 5.3 The functions ω(n) and Ω(n)......Page 100
§ 5.4 Euler's function φ(n)......Page 101
§ 5.5 The functions σ κ (n), κ > 0......Page 102
Exercises......Page 104
§ 6.1 Introduction......Page 107
§ 6.2 Trigonometric integrals......Page 108
§ 6.3 Trigonometric sums......Page 109
§ 6.4 Application to the theorem of Voronoï......Page 113
Notes......Page 116
Exercises......Page 117
Part II: Methods of complex analysis......Page 120
§ 1.1 Convergent Dirichlet series......Page 122
§ 1.2 Dirichlet series of multiplicative functions......Page 123
§ 1.3 Fundamental analytic properties of Dirichlet series......Page 124
§ 1.4 Abscissa of convergence and mean value......Page 131
§ 1.5 An arithmetic application: the kernel of an integer......Page 133
§ 1.6 Order of magnitude in vertical strips......Page 135
Notes......Page 139
Exercises......Page 144
§ 2.1 Perron formulae......Page 147
§ 2.2 Application: a convergence theorem......Page 151
§ 2.3 The mean value formula......Page 153
Notes......Page 154
Exercises......Page 155
§ 3.2 Analytic continuation......Page 156
§ 3.3 Functional equation......Page 159
§ 3.4 Approximations and bounds in the critical strip......Page 160
§ 3.5 Initial localisation of zeros......Page 164
§ 3.6 Lemmas from complex analysis......Page 166
§ 3.7 Global distribution of zeros......Page 168
§ 3.8 Expansion as a Hadamard product......Page 172
§ 3.9 Zero-free regions......Page 174
§ 3.10 Bounds for ζ'/ζ, 1/ζ and log ζ......Page 175
Notes......Page 177
Exercises......Page 179
§ 4.1 The prime number theorem......Page 184
§ 4.2 Minimal hypotheses......Page 185
§ 4.3 The Riemann hypothesis......Page 187
Notes......Page 191
Exercises......Page 194
§ 5.1 Complex powers of ζ(s)......Page 197
§ 5.2 Hankel's formula......Page 200
§ 5.3 The main result......Page 201
§ 5.4 Proof of Theorem 3......Page 204
§ 5.5 A variant of the main theorem......Page 208
Notes......Page 212
Exercises......Page 214
§ 6.1 Integers having k prime factors......Page 217
§ 6.2 The average distribution of divisors: the arcsine law......Page 224
Notes......Page 229
Exercises......Page 231
§ 7.1 Introduction: Abelian/Tauberian theorems duality......Page 234
§ 7.2 Tauber's theorem......Page 237
§ 7.3 The theorems of Hardy–Littlewood and Karamata......Page 239
§ 7.4 The remainder term in Karamata's theorem......Page 244
§ 7.5 Ikehara's theorem......Page 251
§ 7.6 The Berry–Esseen inequality......Page 257
Notes......Page 259
Exercises......Page 261
§ 8.1 Introduction: Dirichlet characters......Page 265
§ 8.2 L-series. The prime number theorem for arithmetic progressions......Page 269
§ 8.3 Lower bounds for |L(s, χ)| when σ ≥ 1. Proof of Theorem 4......Page 273
Notes......Page 279
Exercises......Page 281
Part III: Probabilistic methods......Page 284
§ 1.1 Definitions. Natural density......Page 286
§ 1.2 Logarithmic density......Page 289
§ 1.3 Analytic density......Page 290
Notes......Page 292
Exercises......Page 293
§ 2.1 Definition—distribution functions......Page 298
§ 2.2 Characteristic functions......Page 302
Notes......Page 305
Exercises......Page 312
§ 3.1 Definition......Page 316
§ 3.2 The Turán–Kubilius inequality......Page 317
§ 3.3 Dual form of the Turán–Kubilius inequality......Page 321
§ 3.4 The Hardy–Ramanujan theorem and other applications......Page 322
§ 3.5 Effective mean value estimates for multiplicative functions......Page 325
§ 3.6 Normal structure of the set of prime factors of an integer......Page 328
Notes......Page 330
Exercises......Page 336
§ 4.1 The Erdős–Wintner theorem......Page 342
§ 4.2 Delange's theorem......Page 348
§ 4.3 Halász' theorem......Page 352
§ 4.4 The Erdős–Kac theorem......Page 364
Notes......Page 367
Exercises......Page 370
§ 5.1 Introduction. Rankin's method......Page 375
§ 5.2 The geometric method......Page 380
§ 5.3 Functional equations......Page 382
§ 5.4 Dickman's function......Page 387
§ 5.5 Approximations to Ψ(x, y) by the saddle-point method......Page 394
Notes......Page 404
Exercises......Page 408
§ 6.1 Introduction......Page 412
§ 6.2 Functional equations......Page 415
§ 6.3 Buchstab's function......Page 420
§ 6.4 Approximations to Φ(x, y) by the saddle-point method......Page 425
Notes......Page 435
Exercises......Page 437
Bibliography......Page 441
Index......Page 460
Back Cover......Page 466