Internal Definability and Completeness in Modal Logic [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Marcus Kracht
Publisher: Freien Universitat
Year: 1990

Language: English
Pages: 113
City: Berlin

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
I Internal Definability 19
1 Basic Definitions 21
1.1 The Internal Language of Modal Logic . . . . . . . . . . . . . . . . . . . 21
1.2 Modal Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Frames as Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 General Frames—both Algebras and Frames . . . . . . . . . . . . . . . . 24
1.5 The External Language of Modal Logic . . . . . . . . . . . . . . . . . . 25
1.6 Some Classes of General Frames . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Completeness and Persistence . . . . . . . . . . . . . . . . . . . . . . . 29
1.8 Some Small Theorems on Persistence . . . . . . . . . . . . . . . . . . . 30
2 Internal Describability 33
2.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Definability—an Example . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Internal Describability . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Definability and Completeness . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Results on Describable Concepts . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Universal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 Some General Results on Internal Definability 43
3.1 General Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Preservation, Reflection and Invariance . . . . . . . . . . . . . . . . . . . 44
3.3 Quasi-elementary Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Closure Conditions and Syntactic Classes . . . . . . . . . . . . . . . . . 46
3.5 A Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Sahlqvist’s Theorem 49
4.1 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Esakia’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Proof of Sahlqvist’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 A Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Some Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 The Converse of Sahlqvist’s Theorem does not Hold . . . . . . . . . . . 55
II Completeness 57
5 Logics from the Drawing-Board 59
5.1 Sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Sketch–Omission Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Subframe Logics as Sketch-Omission Logics . . . . . . . . . . . . . . . 63
5.4 Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Differentiation Sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6 The Structure of Finitely Generated K4-Frames 67
6.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Depth defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 The Structure of Finitely Generated K4-Frames . . . . . . . . . . . . . . 70
6.4 Blocks and Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 Points of Depth One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.6 Points of Finite Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.7 Some Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.8 Quasi-Maximal Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.9 Logics of finite width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7 Logics Containing K4 with and without F.M.P. 85
7.1 Subframe Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Homogenization of Models . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Logics of finite width once again . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Logics of Tightness Two . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.5 Scattered Sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.6 More Preservation Properties . . . . . . . . . . . . . . . . . . . . . . . . 97
B Symbols 100
C Index 102
D Logics 105
11 German Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
12 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113