Interactions between compressed sensing, random matrices, and high dimensional geometry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Djalil Chafaï and Olivier Guédon and Guillaume Lecué and Alain Pajor
Series: Panoramas et Synthèses 37
Publisher: Société Mathématique de France (SMF)
Year: 2012

Language: English
Commentary: Draft version
Pages: 163

Contents......Page 1
Introduction......Page 7
1.1. Orlicz spaces......Page 17
1.2. Linear combination of Psi-alpha random variables......Page 22
1.3. A geometric application: the Johnson-Lindenstrauss lemma......Page 30
1.4. Complexity and covering numbers......Page 32
1.5. Notes and comments......Page 40
2.1. A short introduction to compressed sensing......Page 43
2.2. The exact reconstruction problem......Page 44
2.3. The restricted isometry property......Page 51
2.4. The geometry of the null space......Page 52
2.5. Gelfand widths......Page 55
2.6. Gaussian random matrices satisfy a RIP......Page 57
2.7. RIP for other ``simple" subsets: almost sparse vectors......Page 60
2.8. An other complexity measure......Page 68
2.9. Notes and comments......Page 71
3.1. The chaining method......Page 73
3.2. An example of a more sophisticated chaining argument......Page 78
3.3. Application to Compressed Sensing......Page 85
3.4. Notes and comments......Page 87
4.1. The notion of singular values......Page 89
4.2. Basic properties......Page 92
4.3. Relationships between eigenvalues and singular values......Page 96
4.4. Relation with rows distances......Page 98
4.5. Gaussian random matrices......Page 99
4.6. The Marchenko–Pastur theorem......Page 104
4.7. Proof of the Marchenko–Pastur theorem......Page 108
4.8. The Bai–Yin theorem......Page 117
4.9. Notes and comments......Page 118
Chapter 5. Empirical methods and selection of characters......Page 121
5.1. Selection of characters and the reconstruction property.......Page 122
5.2. A way to construct a random data compression matrix......Page 126
5.3. Empirical processes......Page 128
5.4. Reconstruction property......Page 138
5.5. Random selection of characters within a coordinate subspace......Page 141
5.6. Notes and comments......Page 147
Notations......Page 149
Bibliography......Page 151
Index......Page 161