This volume gathers the contributions from the international conference "Intelligence of Low Dimensional Topology 2006," which took place in Hiroshima in 2006. The aim of this volume is to promote research in low dimensional topology with the focus on knot theory and related topics. The papers include comprehensive reviews and some latest results.
Author(s): J. Scott Carter, Seiichi Kamada, Louis H. Kauffman, Akio Kawauchi, Toshitake Kohno
Series: Series on Knots and Everything
Edition: 2006.
Publisher: World Scientific Pub Co (
Year: 2007
Language: English
Pages: 398
CONTENTS......Page 12
Preface......Page 8
Organizing Committees......Page 10
1. Introduction......Page 17
2. A family of 3-manifolds with a pair of punctured tori as boundary......Page 18
3. Ford domains for hyperbolic structures in MP......Page 20
References......Page 23
1. Introduction......Page 25
2. Self-distributivity: From sets to coalgebras......Page 26
3. Hochschild cohomology......Page 27
4. Cohomology for the coalgebra self-distribitivity......Page 29
References......Page 32
1. Introduction......Page 35
2. Khovanov homology......Page 36
3. Equivariant Khovanov homology......Page 38
4. Invariance under Reidemeister moves......Page 39
References......Page 40
1. Introduction......Page 43
2. Self Delta Classi.cation of 2-String Links......Page 46
References......Page 50
1. Introduction......Page 51
2. Heegaard splitting for sutured manifolds and product decompositions......Page 52
3.The Morse-Novikov numbers for prime knots of 10 crossings and links of 9 crossings......Page 54
4. Connected sum......Page 56
5. Novikov homology and the Alexander invariant......Page 57
References......Page 58
1. Braided Seifert surfaces......Page 59
2. Oriented 2-bridge links......Page 61
4. Minimal braids for 2-bridge links......Page 62
5. Some examples......Page 64
References......Page 65
1. Introduction......Page 67
2. A magnetic link/tangle......Page 68
3. Smoothing resolution formula......Page 69
References......Page 72
1. Introduction......Page 73
2. Quandle cocycle invariants......Page 76
3. Proof of Theorem 1.1 (i)......Page 78
References......Page 79
1. Arc presentations, Cromwell diagrams and Cromwell matrices......Page 81
2. Tabulation of knots by arc index......Page 82
3. Prime knots up to arc index 10......Page 84
References......Page 90
1. Introduction......Page 91
2. Inverse limits and the p-adic integers......Page 92
3. p-adic framed braids......Page 94
4. The p-adic Yokonuma-Hecke algebra......Page 97
5. A p-adic Markov trace......Page 99
References......Page 100
1. Introduction (Question and Theorems)......Page 101
2. Key lemma from the first homology group......Page 104
3. Examples......Page 105
References......Page 107
1. Introduction......Page 109
2. Some features of Miyazawa polynomials......Page 110
3. Gauss chord diagram......Page 113
References......Page 114
2. Quandles/Racks with Good Involutions......Page 117
3. Associated Groups......Page 119
5. Colorings......Page 120
6. Homological invariants......Page 122
7. Surface-Link Case......Page 123
References......Page 124
1. Introduction......Page 125
2. Preliminaries......Page 126
3. Invariants of Order 4 for an Ordered Oriented 2-Component Link......Page 127
4. Invariants of Order 4 for Unordered Oriented 2-Component Links......Page 130
References......Page 131
1. Introduction......Page 133
3. The kernel of p[2,2]......Page 134
4. Concluding remark......Page 136
References......Page 137
1. Introduction......Page 139
2. Quantum Entanglement and Topological Entanglement......Page 140
3. Entanglement, Universality and Unitary R-matrices......Page 141
4. Topological Quantum Field Theory and Topological Quantum Computation......Page 143
References......Page 146
1. Introduction......Page 149
2. Virtual Knot Theory......Page 150
3. The L-equivalence for Virtual Braids......Page 152
4. The L–move Markov Theorem for Virtual Braids......Page 156
5. Algebraic Markov Equivalence for Virtual Braids......Page 157
References......Page 158
1. Introduction......Page 159
2. Definitions and preliminaries......Page 160
3. Proof of the theorem......Page 162
References......Page 166
Conjectures on the braid index and the algebraic crossing number K. Kawamuro......Page 167
References......Page 171
1. Manifold-link groups......Page 173
2. Grading the surface-link groups......Page 174
3. Classical link groups......Page 176
4. Virtual link groups......Page 178
References......Page 179
1. Introduction......Page 181
2. Definition of a well-order on the set of links......Page 182
3. A method of a tabulation of prime links......Page 183
5. A method of a tabulation of 3-manifolds......Page 186
References......Page 188
1. Introduction......Page 189
2. A sketch of the proof of Theorem 1.1......Page 190
3. Minimality, period and degree one map......Page 191
References......Page 192
1. Introduction......Page 195
2. Schlafli’s differential equality......Page 196
3. Iterated integrals......Page 197
4. Volumes of spherical simplices......Page 198
5. Analytic continuation to hyperbolic volumes......Page 200
6. Nilpotent connections......Page 203
References......Page 204
1. Introduction......Page 205
2. Hyperbolic splittings of surface links in R4......Page 206
3. Construction of the invariants......Page 207
4. The invariants via the Kauffman bracket polynomial......Page 211
References......Page 212
1. Introduction......Page 213
2.1. Clasper theory in a nutshell......Page 215
2.1.1. Finite type invariants......Page 216
3.1. 1/m-surgery along Brunnian links......Page 217
3.3. Sketch of the proof of Theorem 1.1......Page 218
Acknowledgments......Page 219
References......Page 220
1. Introduction......Page 221
2. VG diagrams......Page 222
3. A Polynomial for VG diagrams......Page 223
4. Invariants for VG diagrams......Page 224
5. Non-classicality of a virtual knot......Page 226
References......Page 228
1. Analogies between knots and primes......Page 229
2. Deformation of hyperbolic structures on a knot complement and of modular Galois representations......Page 231
References......Page 238
1. Introduction......Page 239
2. Preliminaries......Page 240
3. Gap of foliations......Page 241
4. Main result......Page 245
References......Page 246
1. Introduction......Page 247
2. A principal analytic realization theorem......Page 249
3. Dependence on analytic structure......Page 250
4. Singularities of splice type......Page 253
References......Page 254
1. Introduction......Page 255
2. Achiral spatial embedding of K5 and K3,3 with any value of the Simon invariant......Page 256
References......Page 259
1. The configuration space of the spiders with n arms of radius r......Page 261
2.1.1. The case when r is big (r n < r < 2)......Page 264
2.1.2. The case when r is small (0 < r < rn)......Page 265
2.2. Morse theoretical proof......Page 266
3. Problem......Page 267
References......Page 268
1. Introduction......Page 269
2. Equivariant quantum invariants......Page 270
3. Invariants of branched cyclic covers......Page 276
References......Page 278
2. Four classes of links......Page 279
3. Proof of theorem 2.2......Page 281
4. Toral surfaces......Page 283
5. Proof of theorem 4.1......Page 284
Acknowledgements......Page 285
References......Page 286
1. Introduction......Page 287
2. Homology cylinders......Page 288
3.1. Magnus representation......Page 290
4. Torsion-degree functions......Page 291
5.1. Torsion-degrees of the Magnus matrix rk(M)......Page 292
Acknowledgments......Page 293
References......Page 294
1. Introduction......Page 295
2. Statement of the result......Page 296
4. Marko. maps and parabolic representations of 2-bridge knot groups......Page 297
References......Page 302
1. Introduction......Page 303
2. Colorings of Diagrams by Quandles......Page 304
3. Quandle Cocycle Invariants......Page 306
References......Page 307
1. Introduction......Page 309
2. Polynomials and their cables......Page 316
4. The colored Jones polynomial......Page 317
5. Counterexamples to Przytycki’s question......Page 318
7. Fundamental group calculations......Page 319
8. 2-cable Kauffiman polynomials......Page 320
References......Page 321
1. Introduction......Page 315
2. Our infinite sequence......Page 312
References......Page 313
1. Introduction......Page 323
2.3. Carter and Saito’s theorem......Page 324
4. Picture theory......Page 326
5. Salvetti’s complex for braid hyperplane arrangements......Page 327
5.1. 2-skeleton......Page 328
5.2. 3-cells and their boundaries......Page 329
References......Page 330
1. Introduction......Page 331
2. Alexander polynomial and lens surgery......Page 333
3. Doubly primitive knots......Page 335
4. A constraint of Alexander polynomials of knots yielding lens spaces......Page 336
References......Page 337
1. Introduction......Page 339
2. Strongly periodic links......Page 340
3. The Conway polynomial......Page 341
4. The Alexander polynomial in a rational homology sphere......Page 343
5. Lescop’s surgery formulation......Page 344
References......Page 345
1. Introduction......Page 347
2. Proof of Theorem 1.1......Page 349
References......Page 351
1. Introduction......Page 353
2. Polynomials of graphs......Page 354
3. The Yamada polynomial......Page 355
4.2. The general construction......Page 356
4.3. The special case......Page 360
5. The Example......Page 361
References......Page 362
1. Introduction......Page 363
2. Limit values of the non-abelian twisted Reidemeister torsion associated to knots......Page 364
3. Proof of Theorem......Page 368
References......Page 369
2. Open books......Page 371
3. Contact structure......Page 372
4. Contact structures and open books......Page 373
5. Overtwisted open books......Page 374
References......Page 376
1. Introduction......Page 377
2. Construction of UV m-1-maps......Page 379
Acknowledgements......Page 381
References......Page 382
1. Introduction......Page 383
2. Cell-complexes for surface diagrams......Page 384
3. Constructing cell-complexes......Page 388
References......Page 390
1. Introduction......Page 391
2. Rational blow-down......Page 392
3. Seiberg-Witten invariants......Page 394
4. Outline of proof of Theorem 1.1......Page 395
References......Page 397