Instrumentation Design Studies

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Integrating physical modeling, mathematical analysis, and computer simulation, Instrumentation Design Studies explores a wide variety of specific and practical instrumentation design situations. The author uses MATLAB® and SIMULINK® for dynamic system simulation, Minitab® for statistical applications, and Mathcad for general engineering computations. Rather than consult the extensive manuals of these software packages, readers can access handy, sharply focused material in the appendices to assist in comprehension.

After introducing the techniques behind the design of experiments (DOE), the book discusses several technologies for implementing vibration isolation, the design of a high-accuracy pressure transducer, and the use of cold-wire thermometers for measuring rapidly fluctuating fluid temperatures. It then focuses on a basic piezoelectric actuator that provides translational motions up to about 1mm full scale with nanometer resolution, before covering instruments used to measure the viscosity of liquids as well as two special classes of microphones (infrasonic and ultrasonic) and their important specialized applications. The book also presents statistical tools, such as hypothesis testing and confidence intervals, for experiments; the design and applications of thrust stands for measuring vector forces and torques; and the analysis and simulation of a shock calibrator. It concludes with a discussion of how shock testing machines can help reduce or prevent mechanical failures.

Spanning system dynamics, measurement, and control, this book addresses the needs of practicing engineers working in instrumentation fields. It focuses on instruments for various applications, from geophysics to mechanical and aerospace engineering.

Author(s): Ernest Doebelin
Edition: 1
Publisher: CRC Press
Year: 2010

Language: English
Pages: 725
Tags: Приборостроение;Матметоды и моделирование в приборостроении;

Cover......Page 1
Instrumentation Design Studies
......Page 2
ISBN: 9781439819487......Page 5
Contents......Page 6
Preface......Page 12
Author......Page 14
1.1 Introduction......Page 16
1.2 Basic Concepts......Page 17
1.3 Mathematical Formulation......Page 18
1.4 Full-Factorial and Fractional-Factorial Experiments......Page 19
1.5 Run-Sequence Randomization......Page 20
1.7 Example Experiment: Modeling an Electronics Cooling Process......Page 21
1.8 Using Minitab® to Design the Experiment and Then Analyze the Results......Page 23
1.9 Multiple Regression: A General Tool for Analyzing Experiment Data and Formulating Models......Page 30
1.10 Stepwise Regression......Page 32
2.1 Introduction......Page 46
2.2 Passive Spring/Mass Isolators......Page 47
2.3 Passive Air-Spring Systems......Page 56
2.4 Active Air-Spring Systems......Page 75
2.5 Low-Frequency Isolation UsingNegative-Spring-Constant Devices......Page 84
2.6 Active Electromechanical Vibration Isolation......Page 95
2.7 Tuned Vibration Absorbers and Input-Shaping Methods......Page 114
3.1 Introduction......Page 126
3.2 Basic Concept......Page 127
3.3 Cylinder Natural Frequency Calculations......Page 133
3.4 Use of an Unstable Feedback System toMaintain Continuous Oscillation......Page 135
3.5 Nyquist and Root-Locus Studies of System Operation......Page 144
3.6 Simulation of the Complete System......Page 146
3.7 Ultraprecision Calibration/Measurement Usinga 15-Term Calibration Equation, Built-In TemperatureCompensation, and Microprocessor Data Reduction......Page 151
4.1 Introduction......Page 162
4.2 Circuitry and Wire Details......Page 163
4.3 Estimating the Self-Heating Error......Page 167
4.4 Estimating the Sensitivity to Desired and Spurious Inputs......Page 173
4.5 Dynamic Response to Fluid Temperature Fluctuations......Page 174
4.6 Use of Current Inputs for Dynamic Calibration......Page 178
4.7 Electronic Considerations......Page 180
4.8 Effect of Conduction Heat Transfer at the Wire Ends......Page 182
5.1 Introduction......Page 192
5.2 Mechanical Considerations......Page 195
5.3 Actuators, Sensors, and Mounting Considerations......Page 201
5.4 Control System Design......Page 213
6.2 Definition of Viscosity......Page 244
6.3 Rotational Viscosimeters......Page 246
6.4 Measurement of Torque......Page 248
6.5 Dynamic Measurements......Page 251
6.6 Velocity Servos to Drive the Outer Cylinder......Page 257
6.7 Calibration......Page 268
6.8 Corrections to the Simplified Theory......Page 273
6.9 Non-Newtonian Fluids......Page 275
6.10 The Concept of the Representative Radius......Page 277
6.11 The Concept of Effective Length......Page 278
6.12 Cylinder Design according to German Standards......Page 280
6.13 Designing a Set of Cylinders......Page 283
6.14 Temperature Effect on Viscosity......Page 284
6.15 Temperature Control Methods......Page 288
6.16 Uncertainty Analysis......Page 303
6.17 Encoder Angular Position and Speed Measurement......Page 313
6.18 Practical Significance of the Shear Rate......Page 315
6.19 Fitting a Power-Law Model for a Non-Newtonian Fluid......Page 319
7.1 Introduction......Page 326
7.2 Infrasonic Microphones......Page 327
7.3 Diaphragm Compliance Calculation......Page 329
7.4 Microphone Transfer Function......Page 331
7.5 System Simulation......Page 332
7.6 Adjusting Diaphragm Complianceto Include Air-Spring Effect......Page 335
7.7 Calibration......Page 343
7.8 Wind Noise Filtering with Pipes and Spatial Arrays......Page 346
7.9 Ultrasonic Microphones......Page 357
7.10 Ultrasonic Acoustics Pertinent to Leak Detection......Page 366
8.1 Introduction......Page 370
8.2 Checking Data for Conformance to SomeTheoretical Distribution......Page 372
8.3 Confidence Intervals for the Average (Mean) Value......Page 381
8.4 Comparing Two Mean Values: OverlapPlots and Confidence Intervals......Page 386
8.5 Confidence Intervals for the Standard Deviation......Page 390
8.6 Specifying the Accuracy Needed in IndividualMeasurements to Achieve a Desired Accuracyin a Result Computed from Those Measurements......Page 394
9.1 Introduction......Page 402
9.2 Dynamics of Thrust Stand Force/Torque Measurement......Page 404
9.3 Characteristics of Elastic Elements in Three Dimensions......Page 407
9.4 Dynamic Response Equations of the Thrust Stand......Page 412
9.5 Matrix Methods for Finding Natural Frequencies and Mode Shapes......Page 416
9.6 Simulink® Simulation for Getting the Time Response to Initial Conditions and/or Driving Forces/Moments......Page 423
9.7 Frequency Response of the Thrust Stand......Page 431
9.8 Matrix Frequency Response Methods......Page 436
9.9 Simulation of the Asymmetric System: Use of Simulink Subsystem Module......Page 442
9.10 Static Calibration of Thrust Stands......Page 447
9.11 Damping of Thrust Stands......Page 457
9.12 Flexure Design......Page 470
10.1 Introduction......Page 482
10.2 Description of the Calibrator......Page 483
10.3 Review of Basic Impact Calculations......Page 486
10.4 Simulation of the Coefficient of Restitution Drop-Test Experiment......Page 489
10.5 Some Analytical Solutions......Page 501
10.6 Simulation of the Pneumatic Shock Calibrator Apparatus......Page 506
10.7 Concluding Remarks......Page 520
11.1 Introduction......Page 522
11.2 Analysis and Simulation of Response to Shock Inputs......Page 524
11.3 Shock Response Spectrum......Page 531
11.4 Practical Shock Testing and Analysis......Page 535
11.5 Pyrotechnic Shock......Page 548
11.6 Vibration Shakers as Shock Pulse Sources......Page 554
11.7 Design of a Shock Isolator......Page 560
11.8 Relation of SRS to Actual Mechanical Damage......Page 567
11.9 Measurement System and Data Acquisition/Processing Considerations......Page 573
A.1.1 A Little History......Page 576
A.1.2 Basic Concepts......Page 577
A.1.3 Graphing Methods......Page 579
A.1.4 The Simulink Functional Blocks......Page 581
A.1.5 Running a Simulation......Page 582
A.1.6 Configuring the To Workspace Blocks......Page 585
A.1.7 “Wiring” the Block Diagram (Connecting and Manipulating the Blocks)......Page 586
A.1.8 Setting Numerical Values of System Parameters: MATLAB Scripts/Files......Page 587
A.1.9 Making Tables of Numerical Values of Variables......Page 589
A.1.11 Simulating Sets of Simultaneous Equations......Page 590
A.1.12 Frequency-Selective Filters......Page 598
A.1.13 Working with Random Signals......Page 606
A.1.14 Generating Random Signals, with Prescribed PSD, for Vibration Testing......Page 619
A.1.15 Example Applications of Some Functional Blocks......Page 623
A.2.1 Introduction......Page 637
A.2.3 Units for Amplitude Ratios and Phase Angles......Page 638
A.2.4 Computing and Graphing the Frequency-Response Curves......Page 639
A.2.5 Fitting Analytical Transfer Functions to Experimental Frequency-Response Data......Page 643
A.2.6 Using sys and tf Statements to Form Transfer Functions......Page 646
A.2.7 Matrix Frequency Response Calculation......Page 648
A.2.8 Finding the Frequency Spectra of Time-Varying Signals......Page 650
A.2.8.1 Frequency Spectrum of Periodic Signals......Page 651
A.2.8.2 Frequency Spectrum of Transient Signals......Page 654
A.2.8.3 Frequency Spectrum of Random Signals......Page 660
A.2.9 Overlap Processing......Page 664
A.2.10 Experimental Modeling of Systems Using Frequency-Response Testing......Page 666
B.1 Introduction......Page 676
B.2 Getting Data into Minitab Using the Worksheet......Page 679
B.3 Manipulating Data in the Worksheet......Page 681
B.4 Graphing Tools for General Graphing......Page 683
B.5 Checking Physical Data for Conformance to Some Theoretical Distribution......Page 686
B.6 Computing Mean and Standard Deviation (and Their Confidence Intervals) for a Sample of Data......Page 688
B.7 Transforming a Non-Gaussian Distribution to a Gaussian One......Page 689
B.8 Comparing Means and Standard Deviations......Page 694
B.9 Multiple Regression......Page 697
B.9.1 Curve Fitting......Page 698
B.9.2 Model Building......Page 704
B.9.2.1 Best Subsets Regression......Page 708
B.9.2.2 Validation Experiments......Page 711
B.9.2.4 Nonnumerical Factors......Page 712
B.9.2.5 3-Level Experiments (See Also Chapter 1)......Page 713