Innovative Energetic Materials: Properties, Combustion Performance and Application

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the combustion performance and application of innovative energetic materials for solid and hybrid space rocket propulsion. It provides a comprehensive overview of advanced technologies in the field of innovative energetic materials and combustion performance, introduces methods of modeling and diagnosing the aggregation/agglomeration of active energetic metal materials in solid propellants, and investigates the potential applications of innovative energetic materials in solid and hybrid propulsion. In addition, it also provides step-by-step solutions for sample problems to help readers gain a good understanding of combustion performance and potential applications of innovative energetic materials in space propulsion. This book serves as an excellent resource for researchers and engineers in the field of propellants, explosives, and pyrotechnics.

Author(s): WeiQiang Pang (editor), Luigi T. DeLuca (editor), Alejandro A. Gromov (editor), Adam S. Cumming (editor)
Edition: 1st ed. 2020
Publisher: Springer
Year: 2020

Language: English
Pages: 569

Preface
Contents
Editors and Contributors
Part I Properties of Innovative Energetic Materials
1 Study of a Concept of Energetic Materials Consisting of a Solid Fuel Matrix Containing Liquid Oxidizer
1.1 Introduction
1.2 Theoretical Performance
1.3 Combustion Model
1.4 Mass Conservation
1.5 Fuel/Oxidizer Energy Balances
1.6 Characteristic Cycle Times
1.7 Results
1.8 Summary
References
2 Enhancing Micrometric Aluminum Reactivity by Mechanical Activation
2.1 Introduction
2.2 Mechanical Activation
2.2.1 General Considerations on Powder Design
2.2.2 Case Study #1: Activated Ingredients for HREs
2.2.3 Case Study #2: Activated Ingredients for SRMs
2.2.4 Production of Mechanically Activated Powders
2.3 Metal Ingredients Characterization
2.3.1 Morphology Analysis
2.3.2 Metal Content
2.3.3 Thermogravimetry
2.4 Case Study #1: Experimental Tests in Solid Fuels
2.4.1 Material
2.4.2 HYF Ballistics
2.5 Case Study #2: Experimental Tests in Solid Propellants
2.5.1 Material
2.5.2 SP Ballistics
2.5.3 Metal Agglomeration
2.6 Conclusions and Future Developments
References
3 Preparation and Energetic Properties of Nanothermites Based on Core–Shell Structure
3.1 Introduction
3.2 Fuel–Oxidizer Core–shell Nanothermites
3.2.1 Synthesis Strategies for Fuel–Oxidizer Nanothermites
3.2.2 Energetic Performance for Fuel–Oxidizer Core–shell Nanothermites
3.3 Oxidizer–Fuel Core–shell Nanothermites
3.3.1 Synthesis Strategies for Oxidizer–Fuel Nanothermites
3.3.2 Energetic Performance for Oxidizer–Fuel Core–shell Nanothermites
3.4 Concluding Remarks and Suggestions
References
4 Current Problems in Energetic Materials Ignition Studies
4.1 Introduction
4.2 Terminology and Physical Pattern of the EM Ignition
4.3 Brief Review of Experimental Methods to Record EM Transient Combustion Behavior
4.4 Theoretical Simulation of the EM Inflammation and Ignition
4.5 Ignition Simulation of EM with Open Reacting Surface
4.6 Use of Ignition Delay Data for Deriving the High-Temperature Kinetic Parameters of Condensed-Phase Reaction
4.7 Ignition Simulation for EMs with Shielded Reacting Surface
4.7.1 Opaque EMs
4.7.2 Semitransparent EM
4.8 Concluding Remarks
References
Part II Combustion Performance of Energetic Materials
5 Transient Burning of nAl-Loaded Solid Rocket Propellants
5.1 Background
5.2 Motivations and Objectives
5.3 Introduction to Nanoenergetic Materials
5.3.1 Historical Background and Chemical Energy
5.3.2 Ultrafine Versus Nano-Sized Particles
5.3.3 The Energy Excess Illusion
5.3.4 First-Generation Versus Advanced nEM
5.3.5 Energetic Applications
5.4 Augmented Steady Ballistic Properties
5.5 Effects of nAl on Unsteady Burning
5.5.1 Fast Depressurization Extinction
5.5.2 Microanalyses of Extinguished Propellant Surfaces
5.5.3 Pressure Deflagration Limit (PDL)
5.5.4 Subatmospheric Burning
5.6 More Transient Burning
5.6.1 Acoustic Damping
5.6.2 Recoil Force
5.6.3 Summary Effects nAl on Unsteady Burning
5.7 Ignition
5.7.1 Meaning of Propellant Flammability
5.7.2 Ignition of AP-Based µAluminized Formulations
5.7.3 Ignition of Al Particles
5.7.4 Effects of nAl on Propellant Ignition
5.7.5 Effects of nAlloy or nBiMe on Propellant Ignition
5.7.6 Summary Effects nAl on Propellant Ignition
5.8 Concluding Remarks
References
6 Aluminized Solid Propellants Loaded with Metals and Metal Oxides: Characterization, Thermal Behavior, and Combustion
6.1 Introduction
6.2 Properties of Metal and Metal Oxide Powdery Additives
6.2.1 Chemical and Phase Composition
6.2.2 Size Distribution and Morphological Properties
6.2.3 Reactivity Parameters
6.2.4 Compatibility of Propellant Components with Powdery Additive
6.3 Energy, Kinetic, and Ballistic Properties of Metallized Solid Propellants with Metals and Metal Oxides
6.3.1 Ballistic Properties of Metallized Propellants with Aluminum Nanopowder Additive
6.3.2 Ballistic Properties of Metallized Propellants with Metal Nanopowder Additive
6.3.3 Ballistic Properties of Metallized Propellants with Metal Oxide Nanopowder Additive
6.3.4 Comparison of Effects of Metal and Metal Oxide Additives
6.4 Conclusion
References
7 Bimetal Fuels for Energetic Materials
7.1 Introduction
7.2 Experimental Methods
7.2.1 The Tested EM Samples
7.2.2 Ignition of EM
7.2.3 Combustion of EM
7.2.4 The Properties of CCP
7.3 Results and Discussion
7.3.1 Thermal Analysis Data
7.3.2 Ignition Parameters
7.3.3 Combustion Characteristics of EM
7.3.4 Characteristics of CCP
7.4 Conclusions
References
8 Combustion/Decomposition Behavior of HAN Under the Effects of Nanoporous Activated Carbon
8.1 Introduction
8.1.1 Hydroxylammonium Nitrate
8.1.2 Carbonized Rise Husk
8.2 Experimental Part
8.2.1 Burning Tests
8.2.2 The Differential Thermal Analysis
8.3 Results and Discussion
8.3.1 The Combustion Experiments in High-Pressure Chamber
8.3.2 Experimental Studies of Thermal Analysis of HAN Decomposition with AC by DTA–TG
8.3.3 The Results of EI–MS
8.4 Conclusion
References
9 Combustion of Ammonium Perchlorate: New Findings
9.1 Introduction
9.2 Combustion of Ammonium Perchlorate Monopropellant
9.2.1 Literature on Combustion of Ammonium Perchlorate
9.2.2 LPDL of Composite Solid Propellants
9.2.3 Experiments
9.2.4 Results and Discussion
9.3 Combustion of AP with Additives
9.3.1 Introduction
9.3.2 Literature Review on AP with Additives
9.3.3 Results and Discussion
9.4 Modeling of AP Monopropellant Combustion
9.4.1 Combustion Model
9.4.2 Governing Equations
9.4.3 Kinetic Details
9.4.4 Initial and Boundary Conditions
9.4.5 Choice of Parameters and Intrinsic Stability
9.4.6 New Parameters of AP Monopropellant Combustion Model
9.4.7 Effect of Heat Loss on AP Monopropellant Combustion
9.5 Summary
References
10 Recent Achievements and Future Challenges on the Modeling Study of AP-Based Propellants
10.1 Introduction
10.2 Modeling of AP Monopropellant Combustion
10.2.1 Theoretical Formulations
10.2.2 Detailed Gas-Phase Kinetics
10.2.3 Comparison of Modeling Results
10.3 Modeling of AP-Based Composite Propellants Combustion
10.3.1 Gas-Phase Controlled Models
10.3.2 Condensed-Phase Models
10.3.3 One-Dimensional Modeling of AP Composites Combustion
10.3.4 Two-Dimensional Modeling of AP Composites Combustion
10.3.5 Multidimensional Modeling of AP Composites Combustion (Molecular Dynamics Simulations)
10.4 Conclusions
References
11 Survey of Low-Burn-Rate Solid Rocket Propellants
11.1 Introduction
11.2 Solid Propellant Burn Rate–What Impacts It?
11.3 Oxidizer Particle Type and Packing
11.4 Impact of SRM Design
11.5 Impact of Grain Manufacturing Processes
11.6 Motor Firing Conditions
11.7 Binder Utilisation
11.8 Use of Alternative Oxidizers to Ammonium Perchlorate and Energetic Materials
11.8.1 Ammonium Nitrate
11.8.2 HMX
11.8.3 RDX
11.8.4 Other Oxidizers
11.9 Burn Rate Suppressants
11.9.1 Oxamide
11.9.2 Ammonium Salts
11.9.3 Lithium Fluoride
11.10 Applications of Low-Burn-Rate Solid Rocket Propellant
11.10.1 Missiles and Artillery
11.10.2 Intercontinental Ballistic Missiles
11.10.3 Drones
11.10.4 Gas Generators
11.10.5 Space Applications
11.11 Outlook on Further Propellant Development and Utilisation
11.12 Conclusions
References
12 Burning Rate of PVC—Plastisol Composite Propellants and Correlation Between Closed Vessel and Strand Burner Tests Data
12.1 Introduction
12.2 Experimental
12.2.1 Formulation and Raw Ingredients
12.2.2 Solid Rocket Propellant Burning Rate Determination
12.2.3 Strand Burner Test
12.2.4 Closed Vessel Test
12.2.5 Closed Vessel with Operculum Test
12.3 Results and Discussion
12.3.1 Correlation Between the Results of the Two Different Burning Rate Tests
12.3.2 Strand Burner
12.3.3 Closed Vessel
12.3.4 Influence of the Nature of Oxidizer on the Propellant Burning Rate
12.3.5 Influence of the Plasticizer
12.3.6 Observation of the Combustion “Quality”
12.4 Conclusion
References
Part III Application of Energetic Materials in Chemical Propulsion
13 Modern Approaches to Formulation Design and Production
13.1 Introduction
13.1.1 Flow Diagram for Formulation Development
13.2 Modeling and Prediction
13.3 Synthesis—Crystallization, Etc.
13.3.1 Constraints on New Materials
13.3.2 Co-crystallization
13.3.3 Novel Approaches
13.3.4 Polymorphism
13.3.5 Crystal Quality
13.3.6 Nanomaterials
13.3.7 Binders
13.3.8 Trace Ingredients
13.4 Characterization and Testing
13.4.1 Chemical Characterization and Testing
13.4.2 Physical Characterization and Testing
13.4.3 Insensitive Munitions
13.5 Environmental Impact
13.5.1 Toxicity [52]
13.5.2 Contamination [53, 54]
13.6 Life Management and Disposal
13.7 Formulation and Processing
13.7.1 Processing Constraints and Approaches
13.7.2 Casting
13.7.3 Extrusion
13.7.4 Pressing
13.7.5 Novel Methods
13.8 Final Remarks
References
14 Method of Model Agglomerates and Its Application to Study the Combustion Mechanisms of Al, Al+B, and Ti Particles
14.1 Introduction
14.2 Fundamentals of the Experimental Research of the Evolution of Burning Metal Particles
14.3 Combustion of Al Agglomerates and Al Particles
14.4 Combustion of Al+B Agglomerates
14.5 Combustion of Ti Agglomerates
14.6 Conclusions and Future Plans
References
15 Deagglomeration and Encapsulation of Metal and Bimetal Nanoparticles for Energetic Applications
15.1 Synthesis of Bimetallic Nanoparticles and the Study of Their Properties
15.2 Synthesis of Metal Particles of Al/Mg Alloy and the Study of Their Properties
15.3 Development of Aluminum and Bimetallic Nanoparticles with Core–Shell Metal-Binder and Metal-High Energetic Matrix Structures
15.4 Development of Model HEM Containing Active and Passive Binders, Effective Oxidizers, and Metal Nanoparticles
15.4.1 Preparation of Al/HTPB Paste
15.5 Conclusions
References
16 Effects of Innovative Insensitive Energetic Materials: 1,1-Diamino-2,2-Dinitroethylene (FOX-7) on the Performance of Solid Rocket Propellants
16.1 Introduction
16.2 Experimental
16.2.1 Raw Materials
16.2.2 Molecular Dynamic Simulations
16.2.3 Formulations
16.2.4 Preparation of Propellants
16.2.5 Equipment and Experimental
16.3 Results and Discussion
16.3.1 Microstructure Physico-Chemical Properties of FOX-7
16.3.2 Compatibility Test
16.3.3 Simulation Results and Discussion
16.3.4 Effect of FOX-7 on the Energetic Properties of Solid Propellant
16.3.5 Effect of FOX-7 on the Combustion Performance of Solid Propellant
16.3.6 Effect of FOX-7 on the Thermal Decomposition of Solid Propellant
16.3.7 Effect of FOX-7 on the Hazardous Properties of Solid Propellant
16.3.8 Effect of FOX-7 on the Mechanical Properties of Solid Propellant
16.4 Conclusions
References
17 Simulation of Condensed Products Formation at the Surface of a Metalized Solid Propellant
17.1 Introduction
17.2 Agglomeration of a Metal Fuel
17.2.1 Model of the Propellant Microstructure
17.2.2 Model of Agglomerating Particles Evolution on the Surface of a Burning Propellant
17.2.3 Model of the Agglomerating Particle Separation from the Propellant Surface
17.2.4 Calculation of Agglomerates Characteristics
17.2.5 Interim Summary
17.3 Smoke Oxide Particles Formation
17.3.1 Smoke Oxide Particles Formation During Combustion of Non-agglomerating Metal
17.3.2 Smoke Oxide Particles Formation During Burning of Agglomerate Metal
17.3.3 Synthesis of Smoke Oxide Particles Formation Models
17.3.4 The Model Analysis
17.4 Conclusions
References