Initial-Boundary Problems and the Navier-Stokes Equation (Classics in Applied Mathematics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Solving the Compressible two dimensional NAvier-Stokes Equation using Fourth order Runge-Kutta method

Author(s): Heinz-Otto Kreiss, Jens Lorenz
Series: Classics in Applied Mathematics
Publisher: SIAM: Society for Industrial and Applied Mathematics
Year: 2004

Language: English
Pages: 418

Initial-Boundary Value Problems and the Navier-Stokes Equations......Page 2
ISBN 0-89871-565-2......Page 7
Contents......Page 8
Preface to the Classics Edition......Page 12
Errata......Page 14
Introduction......Page 16
1 The Navier-Stokes Equations......Page 20
2 Constant-Coefficient Cauchy Problems......Page 42
3 Linear Variable-Coefficient Cauchy Problems in ID......Page 100
4 A Nonlinear Example: Burgers' Equation......Page 140
5 Nonlinear Systems in One Space Dimension......Page 177
6 The Cauchy Problem for Systems in Several Dimensions......Page 194
7 Initial-Boundary Value Problems in One Space Dimension......Page 220
8 Initial-Boundary Value Problems in Serveral Space Dimension......Page 292
9 The Incompressible Navier-Stokes Equations: The Spatially Periodic Case......Page 342
10 The Incompressible Navier-Stokes Equations under Initial and Boundary Conditions......Page 362
Appendix 1 Notations and Results from Linear Algebra......Page 377
Appendix 2 Interpolation......Page 381
Appendix 3 Sobolev Inequalities......Page 387
Appendix 4 Application of the Arzela-Ascoli Theorem......Page 405
References......Page 409
Author Index......Page 415
Subject Index......Page 417