Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The extraction of statistically independent components from high-dimensional multi-sensory input streams is assumed to be an essential component of sensory processing in the brain. Such independent component analysis (or blind source separation) could provide a less redundant representation of information about the external world. Another powerful processing strategy is to extract preferentially those components from high-dimensional input streams that are related to other
information sources, such as internal predictions or proprioceptive feedback. This strategy allows the optimization of internal representation according to the information bottleneck method. However, concrete learning rules that implement these general unsupervised learning principles for spiking neurons are still missing. We show how both information bottleneck optimization and the extraction of independent components can in principle be implemented with stochastically spiking neurons with refractoriness. The new learning rule that achieves this is derived from abstract information optimization principles.

Author(s): Klampfl S., Legenstein R., Maass W.

Language: English
Commentary: 278750
Tags: Информатика и вычислительная техника;Искусственный интеллект;Нейронные сети