Out-of-print for years, this highly sought-after volume, remains the most popular reference on inertial navigation systems analysis. Finally, this classic book is back in print and readily available only from Artech House. Authored by a pioneer in the field, this authoritative resource focuses on terrestrial navigation, but is also useful for air and sea applications. Packed with valuable, time-saving equations and models, the book helps engineers design optimal navigation systems by comparing the performance of the various types of system mechanizations. Although applications and technology have changed over the years, this book remains the best source for fundamental inertial navigation system knowledge, from notational conventions, reference frames, and geometry of the earth, to unified error analysis, self-alignment techniques, and the development of a system error model. This well-illustrated, timeless reference belongs on the shelf of every practicing engineer working in this area. It is suitable for electrical engineers working in the area of GPS and other navigation systems, as well as for graduate engineering students in related courses.
Author(s): Kenneth R. Britting
Edition: 1
Publisher: John Wiley & Sons Inc
Year: 1971
Language: English
Pages: 267
Contents......Page 13
1.1 THE CONCEPT OF INERTIAL NAVIGATION......Page 19
1.2 TYPES OF INERTIAL NAVIGATION SYSTEMS......Page 21
1.3 A CRITIQUE O F PREVIOUS ANALYSIS TECHNIQUES......Page 22
1.4 A UNIFIED APPROACH TO THE ERROR ANALYSIS......Page 25
2 Mathematical Notation and......Page 29
2.1 NOTATIONAL CONVENTIONS......Page 30
2.2 THE TIME DERIVATIVE OF THE DIRECTION......Page 34
2.3 COLUMN MATRIX TlME DERIVATIVES......Page 35
2.4 ANALOGIES TO VECTOR ANALYSIS......Page 36
2.5 PERTURBATION TECHNIQUES......Page 38
2.6 SYMBOLOGY......Page 42
3.1 INERTIAL FRAME (i frame; x, y, z axes)......Page 48
3.2 GEOGRAPHIC FRAME (n frame; N, E, D axes)......Page 51
3.5 BODY FRAME......Page 52
3.7 REFERENCE FRAME RELATIONSHIPS......Page 53
3.8 PLATFORM, ACCELEROMETER, AND GYRO FRAMES......Page 56
4.1 T H E GEOCENTRIC POSITION VECTOR......Page 62
4.2 THE DEVIATION OF THE NORMAL......Page 64
4.3 THE EARTH RADIUS MAGNITUDE......Page 65
4.4 THE EARTH'S GRAVITATIONAL FIELD......Page 67
4.5 THE EARTH'S GRAVITY FlELD......Page 74
4.6 ANALYTIC EXPRESSIONS FOR THE SPECIFIC FORCE......Page 79
5.1 PRINCIPLE OF OPERATION......Page 83
5.2 DYNAMIC MODEL FOR THE SDF GYRO......Page 87
5.3 UNCERTAINTY TORQUE COMPENSATION......Page 92
5.4 INSTRUMENT A N D SYSTEM REDUNDANCY AND......Page 93
6.1 DESCRIPTION O F SYSTEM......Page 97
6.2 MECHANIZATION EQUATIONS......Page 99
6.3 ERROR ANALYSIS......Page 104
7.1 DESCRIPTION OF SYSTEM......Page 127
7.2 MECHANIZATION EQUATIONS......Page 129
7.3 ERROR ANALYSIS......Page 132
7.4 T H E TWO-ACCELEROMETER LOCAL-LEVEL .SYSTEM......Page 141
8.1 A GENERAL TERRESTRIAL NAVIGATOR MODEL......Page 171
8.2 GENERALIZED MECHANIZATION AND ERROR......Page 174
8.3 CANONICAL FORM OF THE ERROR EQUATIONS......Page 194
8.4 SPECIALIZATION OF THE GENERALIZED THEORY......Page 201
8.5 EFFECT OF ALTIMETER UNCERTAINTY......Page 213
9.1 ANALYTIC COARSE ALIGNMENT METHOD......Page 216
9.2 PHYSICAL GYROCOMPASS ALIGNMENT7......Page 221
9.3 ALIGNMENT OF STRAPDOWN SYSTEMS......Page 227
A.1 SYSTEM DESCRIPTION......Page 235
A.2 DERIVATION O F SYSTEM DIFFERENTIAL EQUATIONS......Page 237
A.3 SO-LUTION OF SYSTEM DIFFERENTIAL EQUATIONS......Page 238
A.4 APPROXIMATIONS TO THE SOLUTIONS......Page 242
A.5 DEVELOPMENT OF AN ERROR MODEL......Page 245
B.1 FORMULATION IN STATE SPACE NOTATION......Page 247
B.2 STATE TRANSITION MATRIX......Page 248
8.4 EXAMPLES......Page 250
C.1 RESPONSE O F A LINEAR SYSTEM TO RANDOM INRUTS......Page 253
C.2 RESPONSE TO THE ENSEMBLE OF......Page 254
C.3 RESPONSE TO W H I T E NOISE......Page 255
References......Page 259
Index......Page 263