Index and stability in bimatrix games

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The index of an equilibrium in a game gives information about the "stability" of the equilibrium, for example with respect to game dynamics. Unfortunately, index theory is often very technical. This book presents a new geometric construction that visualises the index in an intuitive way. For example, a 3×n game, for any n, can be represented by a figure in the plane, from which one can read off any equilibrium, and its index as a geometric orientation. With this insight, the index can be characterised in strategic terms alone. Moreover, certain "hyperstable" equilibrium components are seen to have nonzero index. The construction gives an elementary proof that two-player games have a Nash equilibrium, and, in an unusual direction, the powerful fixed point theorem of Brouwer.

Author(s): H. Arndt von Schemde
Series: Lecture Notes in Economics and Mathematical Systems
Edition: 1
Publisher: Springer
Year: 2005

Language: English
Pages: 157