INCOSE Systems Engineering Handbook

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A comprehensive reference on the discipline and practice of systems engineering Systems engineering practitioners provide a wide range of vital functions, conceiving, developing, and supporting complex engineered systems with many interacting elements. The International Council on Systems Engineering (INCOSE)Systems Engineering Handbook describes the state-of-the-good-practice of systems engineering. The result is a comprehensive guide to systems engineering activities across any number of possible projects. From automotive to defense to healthcare to infrastructure, systems engineering practitioners are at the heart of any project built on complex systems. INCOSE Systems Engineering Handbookreaders will find: Elaboration on the key systems life cycle process described in ISO/IEC/IEEE 15288; Chapters covering key systems engineering concepts, system life cycle processes and methods, tailoring and application considerations, systems engineering in practice, and more; and Appendices, including an N2 diagram of the systems engineering processes and a detailed topical index. TheINCOSE Systems Engineering Handbookis a vital reference for systems engineering practitioners and engineers in other disciplines looking to perform or understand the discipline of systems engineering.

Author(s): David D. Walden
Edition: 5
Publisher: Wiley-INCOSE
Year: 2023

Language: English
Pages: 369
City: San Diego

Systems Engineering Handbook
Contents
INCOSE Notices
History of Changes
List of Figures
List of Tables
Preface
How to Use This Handbook
1 Systems Engineering Introduction
1.1 What Is Systems Engineering?
1.2 Why Is Systems Engineering Important?
1.3 Systems Concepts
1.3.1 System Boundary and the System of Interest (SoI)
1.3.2 Emergence
1.3.3 Interfacing Systems, Interoperating Systems, and Enabling Systems
1.3.4 System Innovation Ecosystem
1.3.5 The Hierarchy within a System
1.3.6 Systems States and Modes
1.3.7 Complexity
1.4 Systems Engineering Foundations
1.4.1 Uncertainty
1.4.2 Cognitive Bias
1.4.3 Systems Engineering Principles
1.4.4 Systems Engineering Heuristics
1.5 System Science and Systems Thinking
2 System Life Cycle Concepts, Models, and Processes
2.1 Life Cycle Terms and Concepts
2.1.1 Life Cycle Characteristics
2.1.2 Typical Life Cycle Stages
2.1.3 Decision Gates
2.1.4 Technical Reviews and Audits
2.2 Life Cycle Model Approaches
2.2.1 Sequential Methods
2.2.2 Incremental Methods
2.2.3 Evolutionary Methods
2.3 System Life Cycle Processes
2.3.1 Introduction to the System Life Cycle Processes
2.3.1.1 Format and Conventions
2.3.1.2 Concurrency, Iteration, and Recursion
2.3.2 Agreement Processes
2.3.2.1 Acquisition Process
2.3.2.2 Supply Process
2.3.3 Organizational Project-Enabling Processes
2.3.3.1 Life Cycle Model Management Process
2.3.3.2 Infrastructure Management Process
2.3.3.3 Portfolio Management Process
2.3.3.4 Human Resource Management Process
2.3.3.5 Quality Management Process
2.3.3.6 Knowledge Management Process
2.3.4 Technical Management Processes
2.3.4.1 Project Planning Process
2.3.4.2 Project Assessment and Control Process
2.3.4.3 Decision Management Process
2.3.4.4 Risk Management Process
2.3.4.5 Configuration Management Process
2.3.4.6 Information Management Process
2.3.4.7 Measurement Process
2.3.4.8 Quality Assurance Process
2.3.5 Technical Processes
2.3.5.1 Business or Mission Analysis Process
2.3.5.2 Stakeholder Needs and Requirements Definition Process
2.3.5.3 System Requirements Definition Process
2.3.5.4 System Architecture Definition Process
2.3.5.5 Design Definition Process
2.3.5.6 System Analysis Process
2.3.5.7 Implementation Process
2.3.5.8 Integration Process
2.3.5.9 Verification Process
2.3.5.10 Transition Process
2.3.5.11 Validation Process
2.3.5.12 Operation Process
2.3.5.13 Maintenance Process
2.3.5.14 Disposal Process
3 Life Cycle Analyses and Methods
3.1 Quality Characteristics and Approaches
3.1.1 Introduction to Quality Characteristics
3.1.2 Affordability Analysis
3.1.3 Agility Engineering
3.1.4 Human Systems Integration
3.1.5 Interoperability Analysis
3.1.6 Logistics Engineering
3.1.7 Manufacturability/Producibility Analysis
3.1.8 Reliability, Availability, Maintainability Engineering
3.1.9 Resilience Engineering
3.1.10 Sustainability Engineering
3.1.11 System Safety Engineering
3.1.12 System Security Engineering
3.1.13 Loss-Driven Systems Engineering
3.2 Systems Engineering Analyses and Methods
3.2.1 Modeling, Analysis, and Simulation
3.2.2 Prototyping
3.2.3 Traceability
3.2.4 Interface Management
3.2.5 Architecture Frameworks
3.2.6 Patterns
3.2.7 Design Thinking
3.2.8 Biomimicry
4 Tailoring and Application Considerations
4.1 Tailoring Considerations
4.2 SE Methodology/Approach Considerations
4.2.1 Model-Based SE
4.2.2 Agile Systems Engineering
4.2.3 Lean Systems Engineering
4.2.4 Product Line Engineering (PLE)
4.3 System Types Considerations
4.3.1 Greenfield/Clean Sheet Systems
4.3.2 Brownfield/Legacy Systems
4.3.3 Commercial-off-the-Shelf (COTS)-Based Systems
4.3.4 Software-Intensive Systems
4.3.5 Cyber-Physical Systems (CPS)
4.3.6 Systems of Systems (SoS)
4.3.7 Internet of Things (IoT)/Big Data-Driven Systems
4.3.8 Service Systems
4.3.9 Enterprise Systems
4.4 Application of Systems Engineering for Specific Product Sector or Domain Application
4.4.1 Automotive Systems
4.4.2 Biomedical and Healthcare Systems
4.4.3 Commercial Aerospace Systems
4.4.4 Defense Systems
4.4.5 Infrastructure Systems
4.4.6 Oil and Gas Systems
4.4.7 Power & Energy Systems
4.4.8 Space Systems
4.4.9 Telecommunication Systems
4.4.10 Transportation Systems
5 Systems Engineering in Practice
5.1 Systems Engineering Competencies
5.1.1 Difference between Hard and Soft Skills
5.1.2 System Engineering Professional Competencies
5.1.3 Technical Leadership
5.1.4 Ethics
5.2 Diversity, Equity, and Inclusion
5.3 Systems Engineering Relationships to Other Disciplines
5.3.1 SE and Software Engineering (SWE)
5.3.2 SE and Hardware Engineering (HWE)
5.3.3 SE and Project Management (PM)
5.3.4 SE and Industrial Engineering (IE)
5.3.5 SE and Operations Research (OR)
5.4 Digital Engineering
5.5 Systems Engineering Transformation
5.6 Future of SE
6 Case Studies
6.1 Case 1: Radiation Therapy—the Therac-25
6.2 Case 2: Joining Two Countries—the Øresund Bridge
6.3 Case 3: Cybersecurity Considerations in Systems Engineering—the Stuxnet Attack on a Cyber-Physical System
6.4 Case 4: Design for Maintainability—Incubators
6.5 Case 5: Artificial Intelligence in Systems Engineering—Autonomous Vehicles
6.6 Other Case Studies
Appendix A: References
Appendix B: Acronyms
Appendix C: Terms and Definitions
Appendix D: N2 Diagram of Systems Engineering Processes
Appendix E: Input/Output Descriptions
Appendix F: Acknowledgments
Appendix G: Comment Form
Index
EULA