In-situ high-resolution electron microscopy is a modern and powerful technique in materials research, physics, and chemistry, but no book covering it has been published until now. In-situ techniques are not even treated in textbooks of electron microscopy. Thus, there is a need to collect the present knowledge about the techniques and achievements of in-situ electron microscopy in one book. Since high-resolution electron microscopes are available in most modern laboratories of materials science, more and more scientists or students are starting to work on this subject. In this comprehensive volume, the most important techniques and achievements of in-situ high-resolution electron microscopy will be reviewed by renowned experts. Applications in several fields of materials science will also be demonstrated.
Author(s): Florian Banhart
Publisher: World Scientific Publishing Company
Year: 2008
Language: English
Pages: 318
Tags: Физика;Практикумы, экспериментальная физика и физические методы исследования;
CONTENTS......Page 6
1. Definition and History of In-Situ Electron Microscopy......Page 8
2. Modern In-Situ Electron Microscopy......Page 9
3. The Techniques of In-Situ Electron Microscopy......Page 12
4. Limitations of in-situ Electron Microscopy and Future Demands......Page 15
5. Concept of this Book......Page 18
References......Page 20
1. Introduction......Page 22
2. Environmental Scanning/Transmission Electron Microscope......Page 25
2.1. Windowed cell......Page 26
2.2. Differential pumping systems......Page 29
3. Experimental Planning Strategies......Page 31
6. Applications......Page 33
6.1. Nanoscale characterization during synthesis......Page 34
6.1.1. Effect of the environment on nanoparticle morphology......Page 35
6.1.3. Nanoparticle synthesis by de-hydroxylation......Page 36
6.1.3. Chemical vapor deposition (CVD)......Page 39
6.2. Effect of environment on catalytic activity......Page 45
6.3. Effect of humidity on aerosol particles......Page 49
7. Limitations......Page 51
Conclusions......Page 52
References......Page 53
1. Introduction......Page 56
2. Specimen-Heating Holders......Page 57
3.1. Formation of SiC via solid-state reaction and behaviour of grain boundary in SiC......Page 59
3.2. Vibration of a grain boundary and an interface......Page 63
4.1.1. Melting of embedded particles......Page 71
4.1.2. Melting of a wedge-shaped crystal......Page 78
4.1.3. Melting of a conical needle......Page 80
4.2. Solid-liquid interfaces......Page 81
4.2.1. Pure metals......Page 83
4.2.2. Alumina......Page 84
4.2.3. Al-Si alloy......Page 91
4.3.1. Au liquid on Si substrate......Page 100
4.3.2. Al on Si......Page 105
4.3.3. Size dependence of the wetting angle of liquid metals on non-metallic substrates......Page 111
5.1. Oxidation of Si......Page 114
5.2. Three-way catalyst......Page 117
References......Page 119
1. Introduction......Page 122
2. In-Situ Nanoindentation in a TEM......Page 125
2.1. Stage design......Page 127
2.2. Specimen geometry......Page 129
3.1. Specimen preparation and microstructure......Page 130
3.2. In-situ and exsitu nanoindentation experiments......Page 133
4.1. In-situ observations of dislocation propagation......Page 134
4.2. Serrated yielding in Al-Mg alloys......Page 136
4.3. Effect of solute drag on load-controlled indentation curves......Page 137
4.4. Effect of solute drag on displacement-controlled indentation......Page 140
5. Grain Boundary Dynamics in Al and Al-Mg Thin Films......Page 144
6. Superplastic Behavior of Coarse-Grained Al-Mg Alloys......Page 152
6.1. In-situ TEM straining experiments......Page 154
6.2. Dislocation substructure......Page 156
6.3. In-situ observations of substructure evolution......Page 159
7. Conclusions......Page 161
References......Page 164
1. Introduction......Page 168
2. In-Situ Hot-Stage HRTEM of Interphase Boundaries......Page 169
3.1. Diffuse coherent interface in Au-Cu alloy......Page 171
3.2. Partly coherent interfaces in Al-Cu-Mg-Ag alloy......Page 178
3.2.1. Structural and kinetic analyses in an edge-on orientation......Page 179
3.2.2. Structural and kinetic analyses in a face-on orientation......Page 181
3.3. Incoherent interface in Ti-Al alloy......Page 182
4. Summary and Outlook......Page 190
References......Page 191
1. Introduction......Page 194
3.1. Filled carbon nanotubes......Page 196
3.2. Alternative filled inorganic nanotubes performing as nanothermometers: in-situ TEM heating......Page 203
4.1. Filled carbon nanotubes......Page 207
4.2. Filled boron nitride nanotubes......Page 210
4.3. Filled silica nanotubes......Page 213
5.1. Ferromagnet-filled carbon nanotubes......Page 218
5.2. Ceramic-filled BN nanotubes......Page 220
6. Mechanical Deformation of Filled BN Nanotubes......Page 224
7. Concluding Remarks......Page 230
References......Page 231
1. Introduction......Page 236
2.1. Introduction of In-situ ion implantation experiments......Page 237
2.2. Instruments with ion beam interfaces......Page 238
2.3. Irradiation induced phase transformations......Page 240
2.4. Nano-inclusions in materials......Page 242
2.5.1. Nucleation and fluctuation of Xe nanocrystals......Page 243
2.5.2. Motion of atoms in a Xe nanocrystal......Page 246
2.5.3. Coalescence of Xe nanocrystals......Page 247
2.5.4. Ordering in a fluid Xe inclusion contained in Al metal......Page 248
3.1. Introduction of EBID......Page 249
3.2. Mechanisms of EBID......Page 252
3.4.1. Overview of precursors for metal deposition......Page 254
3.4.2. Iron and iron-compound deposition......Page 256
3.5.1. Mask repair and device fabrication......Page 258
3.5.2. Field emitters......Page 259
4. Conclusions and Outlook......Page 260
References......Page 261
1. Introduction......Page 266
2.1. Mechanisms of electron-solid interaction......Page 269
2.1.1. Electronic excitations......Page 270
2.1.2. Atom displacements......Page 271
2.2. Defects generated under electron irradiation......Page 274
3. The Experimental Techniques of In-Situ Electron Microscopy in the Study of Irradiation Effects......Page 275
4.2. Irradiation effects in nanometer-sized crystals......Page 279
4.3.1. Radiation defects in graphitic structures......Page 280
4.3.2. Carbon nanotubes......Page 284
4.3.3. Carbon onions......Page 291
4.4. Phase transformations in nanoparticles under irradiation......Page 295
5. Conclusions......Page 297
References......Page 299
1. Introduction......Page 304
2. Mono-vacancy Formation in SWNT......Page 305
3. Formation and Relaxation of Inter-Layer Defects in a Graphite Gap......Page 307
4. Atomic Migration through Defects of Fullerenes in Nano-Peapods......Page 312
5. Conclusions and Outlook......Page 314
References......Page 315
Index......Page 316