The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches, Implicit Large Eddy Simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the theoretical basis of the ILES methodology and reviews its accomplishments. ILES pioneers and lead researchers combine here their experience to present a comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, as well as professionals involved in the design and analysis of complex turbulent flows.
Author(s): Fernando F. Grinstein, Len G. Margolin, William J. Rider
Edition: 1
Publisher: Cambridge University Press
Year: 2007
Language: English
Pages: 577
Tags: Механика;Механика жидкостей и газов;Турбулентность;
Cover......Page 1
Half-title......Page 2
Dedication......Page 3
Title......Page 4
Copyright......Page 5
Contents......Page 6
Preface......Page 8
List of Acronyms......Page 10
List of Contributors......Page 12
Introduction......Page 16
Section A: Motivation......Page 17
Section B: Capturing physics with numerics......Page 18
Section C: Verification and validation......Page 19
Section D: Frontier flows......Page 21
Section: A Motivation......Page 22
1.1 Introduction to monotone integrated large eddy simulation......Page 24
1.2 The numerical simulation of turbulence......Page 26
1.3 Flux-corrected transport: Our monotone method of choice......Page 29
1.4 Using monotone methods for turbulent flow problems......Page 32
1.5 Concepts and properties of monotone methods......Page 37
1.6 Why should MILES work?......Page 39
1.7 Testing the MILES concepts......Page 43
1.8 Summary......Page 49
REFERENCES......Page 50
2.1 Introduction......Page 54
2.2 Historical perspective......Page 56
2.3 A Physical perspective......Page 61
2.3.1 Laminar flows......Page 62
2.3.2 Renormalization......Page 65
2.3.3 Discussion of the finite-scale equations......Page 67
2.4.1 Implicit SGS stresses......Page 68
2.4.2 Energy analysis and computational stability......Page 69
2.5 A Discussion of energy dissipation......Page 70
REFERENCES......Page 72
Section B: Capturing physics with numerics......Page 74
3.1.1 LES: Statement of the problem......Page 76
3.1.2.1 The filtered Navier–Stokes equations model......Page 79
3.1.2.2 A more realistic model: The twice-filtered Navier–Stokes equations......Page 82
3.1.2.3 Additional mathematical models......Page 83
3.2 Explicit subgrid-scale models......Page 84
3.2.1.1 The basic model......Page 85
3.2.1.2 A few improvement strategies......Page 87
3.2.2 Structural subgrid-scale models......Page 91
3.2.2.2 Full reconstruction of subgrid scales......Page 92
3.2.3 Extension for compressible flows......Page 93
3.3.1 General statement of the problem......Page 94
3.3.2 Turbulent inflow conditions......Page 95
3.3.2.2 Deterministic methods......Page 96
3.3.3.1 Statement of the problem......Page 97
3.3.3.2 A few wall models......Page 98
3.4.1 Sensitivity and efficiency......Page 100
3.5 Open problems in the explicit LES approach......Page 101
3.6.1 Incompressible flows......Page 104
3.6.2.1 Definition of the filtered variables......Page 105
REFERENCES......Page 106
4a.1 Introduction......Page 109
4a.2 Finite-volume discretization of the Navier-Stokes equation......Page 110
4a.3 Time integration and solution algorithms......Page 112
4a.3.1 Solution algorithms for the incompressible NSE......Page 114
4a.3.2 Solution algorithms for the compressible NSE......Page 115
4a.4.1 Preamble to flux reconstruction of the convective fluxes......Page 116
4a.4.2 Total-variation diminishing, monotonicity, and flux limiting......Page 118
4a.4.3 Examples of flux limiters......Page 121
4a.4.4 Construction of modern TVD-based flux limiters......Page 122
4a.4.5 Flux-corrected transport......Page 124
4a.4.6 Flux reconstruction of the diffusive fluxes......Page 127
4a.5.1 Incompressible NSEs......Page 128
4a.5.2 Compressible Navier-Stokes equations......Page 131
4a.5.3 Detailed properties of the built-in SGS models of ILES......Page 133
4a.5.3.1 Implications of a specific model for the limiter......Page 134
4a.6 The Taylor-Green Vortex problem......Page 135
4a.7 Concluding Remarks......Page 140
REFERENCES......Page 141
4b.1 Introduction......Page 145
4b.2 Design constraints......Page 146
4b.3 PPM interpolation......Page 147
4b.4 Using the interpolation operators to build a subgrid-scale model for a cell......Page 155
4b.5 Summary......Page 159
REFERENCES......Page 160
4c.1 Overview of the numerical method......Page 162
4c.2 Monotonicity properties......Page 164
4c.3 Dissipation......Page 166
4c.4 Inclusion of subgrid-scale models......Page 167
REFERENCES......Page 168
4d.1 Introduction......Page 169
4d.2 Basic scheme......Page 171
4d.3 Accuracy, stability, and benchmark results......Page 173
4d.4 Extensions......Page 174
4d.4.1 Generalized transport equation......Page 175
4d.4.2 Transporting fields of variable sign......Page 176
4d.4.3 Nonoscillatory option......Page 177
4d.5 Concluding remarks......Page 180
REFERENCES......Page 181
4e.1 Introduction......Page 183
4e.2 Vorticity confinement: Basic concepts......Page 187
4e.2.1 Illustrative one-dimensional example......Page 189
4e.3 Vorticity confinement: Methodology......Page 192
4e.3.1 Basic formulation......Page 195
4e.3.2 Comparison of the VC2 formulation with direction-split discontinuity-steepening schemes......Page 204
4e.4 Conclusions......Page 206
REFERENCES......Page 207
5.1 Introduction......Page 210
5.2 Modified equation analysis......Page 211
5.3 MEA of a high-resolution method......Page 215
5.4 Energy analysis and the relation of LES and ILES......Page 221
5.5 Validation of the analysis......Page 223
5.6 Analysis of multidimensional equations......Page 228
5.7 Summary......Page 235
REFERENCES......Page 236
6.1 Introduction......Page 237
6.2 Filter-kernel definitions......Page 239
6.3 Averaged equation and filtering approach......Page 241
6.4 Subgrid-scale approximation......Page 242
6.5 Modeling......Page 246
6.5.1 Extension to the Navier-Stokes equations......Page 249
6.5.2 Transition in the three-dimensional Taylor-Green vortex......Page 252
6.6 Summary......Page 255
REFERENCES......Page 256
Section C: Verification and validation......Page 258
7.1 Introduction......Page 260
7.2 Large-scale 3D simulations of turbulent flows......Page 261
7.3 Purpose of the simulations: Validationand testing of turbulence models......Page 263
7.4 Potential role of turbulence models......Page 266
7.5 Correlation of the action of a turbulent cascade with the local flow topology......Page 269
7.6 Visual evidence for the correlation of FSGS with det(S)......Page 272
7.7 Summary......Page 277
REFERENCES......Page 278
8.1 Introduction......Page 280
8.2.1 Motivation......Page 281
8.2.2 FCT-based model......Page 283
8.3.1 Global instabilities......Page 284
8.3.2 Self-organization......Page 286
8.3.3 Complex vortex dynamics......Page 290
8.3.4 Entrainment and combustion dynamics......Page 293
8.4 Small-scale emulation......Page 297
8.4.2 Sensitivity to multidimensional SGS model specifics......Page 301
REFERENCES......Page 303
9.1 Introduction......Page 307
9.2.2 Shock propagation in an enclosure......Page 308
9.2.3 Interaction of a shock wave with a bubble......Page 310
REFERENCES......Page 314
10.1 Introduction......Page 316
10.1.1 Overview of CFD models for incompressible flows......Page 317
10.1.2 Summary of numerical algorithms......Page 320
10.2 Fully developed turbulent channel flows......Page 321
10.3 Flow around a circular cylinder at ReD = 3900 and Re = 140,000......Page 324
10.4 Symmetry breaking in a sudden expansion type of flow......Page 329
10.5 Flow around a surface-mounted cube......Page 332
10.6 Flow around the KRISO KVLCC2 tanker hull......Page 336
REFERENCES......Page 340
11.1.1 Governing equations......Page 344
11.1.2 Explicit subgrid-scale models......Page 345
11.1.3 Monotone integrated large eddy simulation......Page 346
11.2.1 Introduction......Page 348
11.2.2 Boundary conditions......Page 351
11.2.2.1 Inflow boundary conditions......Page 352
11.2.2.2 Outflow boundary conditions......Page 354
11.2.2.5 Lateral surface boundary conditions......Page 355
11.2.3 Results......Page 356
11.3.1 Introduction......Page 363
11.3.2 Compression corner......Page 365
11.3.3 Expansion–compression corner......Page 366
11.4 Supersonic base flows......Page 369
11.4.1 Computational configuration......Page 370
11.4.2 Flow results......Page 371
11.4.3 Statistical results......Page 372
Acknowledgment......Page 380
REFERENCES......Page 381
12.1 Introduction......Page 385
12.2.1 Forced turbulence......Page 386
12.2.2 Ellipsoid......Page 388
12.2.3 Flow over a circular cylinder......Page 389
12.2.4 Flow over a square cylinder......Page 391
12.2.5 Flow over a disk......Page 394
12.2.6 Dynamic stall – NACA 0015......Page 396
12.2.7 Flow over a Comanche helicopter fuselage......Page 397
12.2.8 Flow over a missile......Page 400
12.2.9 Other relevant studies......Page 402
12.3 Conclusions......Page 404
REFERENCES......Page 405
13.1 Introduction......Page 407
13.2 Overview of previous simulations......Page 408
13.3.2 Ideal initial conditions......Page 410
13.3.3 Use of SGS models......Page 413
13.3.4 Realistic initial conditions......Page 415
13.3.5 Conclusions......Page 416
13.4.1 Experimental results......Page 417
13.4.2 Simulations......Page 418
REFERENCES......Page 423
Section D: Frontier Flows......Page 426
14.1 Introduction......Page 428
14.2 SGS properties of MPDATA......Page 431
14.3.1 Motivation......Page 436
14.3.2 Analytic formulation......Page 437
14.3.3 Numerical approximations......Page 439
14.4 APPLICATIONS......Page 440
14.4.1 ILES of idealized climate......Page 441
14.4.2 LES of aeolian flows......Page 442
14.4.3 DNS of oceanic boundary–current separation......Page 446
14.5 ILES as a research tool......Page 448
14.6 Remarks......Page 450
REFERENCES......Page 451
15.2 Rewards and challenges......Page 454
15.3 Local area models of stellar convection......Page 456
15.3.1 Results from local area models......Page 457
15.3.2 Validations of local area models......Page 463
15.4 Convection in red giant stars......Page 468
15.5 Adapting PPM to do convection in spherical geometry......Page 470
15.6 Description of convection in spherical geometry......Page 473
15.7 Validation of spherical models......Page 478
15.8 Conclusions and prospects......Page 481
Acknowledgments......Page 482
REFERENCES......Page 483
16.1 Introduction......Page 485
16.2 Submarine hydrodynamics......Page 487
16.2.1 The DARPA AFF-8 Suboff case......Page 488
16.2.2 The computational model......Page 489
16.2.3 Main flow features......Page 490
16.2.4 Statistical comparison......Page 491
16.3 Flow in a multiswirl gas turbine combustor......Page 494
16.3.1 The triple annular research swirler......Page 495
16.3.2 Computational model......Page 496
16.3.3 Results for the flow through the TARS......Page 497
16.4 Flow in an emulated solid rocket motor......Page 499
16.4.1 The cold flow case of Traineau et al......Page 500
16.4.2 The computational approach......Page 501
16.4.3 Computational details......Page 502
16.4.4 Results and discussion......Page 503
16.5 Surface ship hydrodynamics......Page 507
16.5.1 The computational model......Page 508
16.5.2 Computational configuration......Page 509
16.5.3 Results for the towed model LES calculations......Page 510
REFERENCES......Page 513
17.1.1 The established approach: Gaussian plume models......Page 517
17.1.2.2 The LES approach for contaminant transport......Page 519
17.2 MILES for urban-scale simulations......Page 520
17.2.1 Atmospheric boundary layer specification......Page 521
17.2.4 Turbulent stochastic backscatter......Page 523
17.2.5 Geometry specification......Page 524
17.2.7 Tuning the implicit SGS model for urban street crossings......Page 525
17.3 Urban simulation model validation......Page 526
17.3.1 Benchmarking with wind-tunnel urban model data......Page 527
17.3.1.1 Convergence issues......Page 534
17.3.2 Sensitivity to the urban simulation model: Old Town,Stockholm, CT studies......Page 535
17.3.3 Los Angeles simulations: Validation with actual urban field data......Page 539
Acknowledgments......Page 543
REFERENCES......Page 544
18.1 Précis......Page 546
18.2.1 Choosing an NFV algorithm - is there an optimal ILES scheme?......Page 547
18.2.2 Reverse engineering: Can one design new schemesthat are optimal for a particular problem, or seek to emulatea a particular SGS model?......Page 548
18.2.4 Algorithmic details - synchronization and direction splitting......Page 549
18.2.5 Initial and boundary conditions......Page 550
18.3.1 Tensor invariance and mesh imprinting......Page 551
18.3.2 Coupled physics......Page 552
18.4.2 Finite-scale analysis......Page 553
18.5.1 Convergence......Page 554
REFERENCES......Page 555
Index......Page 558