This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources.
Author(s): Hongpeng Liu, Zichao Zhou, Yuhao Li, Wentao Wu, Jiabao Jiang, Enda Shi
Publisher: Springer
Year: 2020
Language: English
Pages: 293
Tags: Power Electronics, Electrical Machines And Networks
Contents......Page 5
1.1.1 Energy Situation......Page 10
1.1.2 Traditional Power Inverter Topologies......Page 14
1.2 Impedance Source Inverters......Page 19
1.3.1 Classification of Impedance Source Inverters......Page 24
1.4 Contents Outline......Page 28
References......Page 29
2.1.1 Structure and Equivalent Circuit......Page 37
2.1.2 Circuit Analysis......Page 39
2.1.3 Quasi-Z-Source Inverter......Page 41
2.2.1 Simple Boost Pulse-Width Modulation......Page 43
2.2.2 Maximum Boost Pulse-Width Modulation......Page 47
2.2.3 Other Boost Pulse-Width Modulation......Page 48
2.3.1 Introduction......Page 49
2.3.2 Single-Loop Methods......Page 50
2.4.1 Structure of Current-Fed Z-Source Inverter......Page 51
2.4.2 Modes of Current-Fed Z-Source Inverter......Page 52
2.4.3 Modulation of Current-Fed Z-Source Inverter......Page 53
2.4.4 Closed-Loop Control of Current-Fed Z-Source Inverter......Page 54
2.5 Summary......Page 55
References......Page 56
3.1 Introduction......Page 58
3.2.1 Z-Source Inverter......Page 59
3.2.2.2 High-Performance Improved Z-Source Inverters......Page 60
3.2.3 Neutral Point Z-Source Inverters......Page 62
3.2.4 Reduced Leakage Current Z-Source Inverters......Page 64
3.2.6 Other Basic Z-Source Inverters......Page 65
3.3.1 Switched Components Z-Source Inverters......Page 67
3.3.2 Tapped Inductor Z-Source Inverters......Page 68
3.3.3 Cascaded Quasi-Z-Source Inverters......Page 69
3.4.1 Three-Level Z-Source Inverters......Page 70
3.5.1 High-Frequency Transformer Isolated Z-Source Topologies......Page 71
3.5.4 Low DC-Link Voltage Spikes Y-Source Topologies......Page 72
3.6 Summary......Page 73
References......Page 74
4.1 T-Source Inverter......Page 79
4.2 Trans-Quasi-Z-Source Inverter......Page 81
4.3 Improved Trans-Quasi-Z-Source Inverter......Page 82
4.5 Inductor–Capacitor–Capacitor–Transformer ZSI......Page 84
4.6 Γ-Source Inverter......Page 85
4.7 Summary......Page 86
References......Page 88
5.1 Y-Source Inverter......Page 89
5.2 Improved Y-Source Inverter......Page 91
5.3 Extended Quasi-Y-Source Inverter......Page 93
5.3.1 Startup Current Suppression......Page 94
5.3.2 Operational States......Page 95
5.3.3 Current Ratings and Core Size of Coupled Inductor......Page 98
5.3.4 Component Stresses......Page 102
5.3.5 Loss of ST Duty Ratio......Page 103
5.3.6 DC-Link Voltage Spikes......Page 106
5.3.7 Experimental Results......Page 108
5.4 Modified Y-Source Inverter......Page 112
References......Page 122
6.1 Introduction......Page 124
6.2 Dual Diodes Capacitor–Diode Absorbing Circuits......Page 125
6.2.1 Operational Modes......Page 128
6.2.2 Current Analysis......Page 130
6.2.3 Voltage Analysis......Page 132
6.2.4 Switching Loss Analysis......Page 136
6.2.5 Simulation and Experimental Results......Page 139
6.2.6 Extension of Topologies Range......Page 146
6.3 Single Diode Capacitor–Diode Clamping Circuits......Page 147
6.4 Embedded Capacitor–Diode Absorbing Circuits......Page 148
6.4.1 Operational States......Page 149
6.4.2 Current Analysis......Page 153
6.4.3 Voltage Analysis......Page 157
6.4.5 Simulation and Experimental Results......Page 159
6.5 Cascaded Quasi-Z-Network Clamping Circuits......Page 164
6.5.1 Operational Modes......Page 165
6.5.2 Current Analysis......Page 168
6.5.3 Voltage Analysis......Page 172
6.5.4 Stresses and Lifetime......Page 176
6.5.5 Extra Power Loss Analysis......Page 177
6.5.6 Simulation and Experimental Results......Page 179
6.6 Summary......Page 185
References......Page 186
7.1 Traditional Analysis of Voltage and Current Stresses......Page 187
7.2.1 Current Analysis......Page 191
7.2.2 Voltage Analysis......Page 193
7.2.3 Method Applied to Other Converters......Page 194
7.3 Transient Analysis Based on Impedance Source Inverter......Page 196
7.3.1.1 Derivation of the Coupled Inductor Model......Page 197
7.3.1.2 Derivation of the Whole Circuit Model......Page 200
7.3.2 Switching Transient Analysis......Page 203
7.3.3 Experimental Results......Page 208
References......Page 212
8.1.1.1 Basic Concept of Reliability Theory......Page 214
8.1.1.2 Index of Reliability Evaluation......Page 216
8.1.2.2 Method for Physics of Failure......Page 218
8.1.3.1 Reliability Block Diagram Method......Page 220
8.1.3.2 Monte Carlo Method......Page 224
8.2 Failure Mechanism of Power Devices......Page 225
8.2.1.2 Electrical Structure of IGBT Module......Page 226
8.2.1.3 The Package Structure of IGBT Module......Page 227
8.2.2 Failure Mechanism of IGBT Module......Page 228
8.2.2.1 Package-Related Fault......Page 229
8.2.2.2 Burning Failure......Page 231
8.2.3 Structure of Capacitor......Page 232
8.2.3.1 Classification of Capacitors......Page 233
8.2.4 Failure Mechanism of Capacitor......Page 236
8.3.1 Thermal Model of IGBT......Page 240
8.3.1.1 IGBT Power Loss Model......Page 241
8.3.1.2 IGBT Thermal Model......Page 245
8.3.2 Thermal Model of Capacitor......Page 248
8.4.1.1 Lifetime Model Based on Statistics......Page 250
8.4.1.2 Lifetime Model Based on Physical Mechanism......Page 251
8.4.2 Lifetime Models of DC-Link Capacitors......Page 252
8.5 Reliability Analysis of Life Distribution......Page 254
8.6 Summary......Page 255
References......Page 256
9.1.1 Power Decoupling Characteristics......Page 258
9.1.2 Application of Impedance Source Inverter in Power Decoupling......Page 262
9.2.1 Photovoltaic Power Characteristics......Page 268
9.2.2 MPPT Control and System Control Methods......Page 269
9.2.3.1 An Improved Y-Source Inverter PV System and Simulation Results......Page 270
9.2.3.2 A Quasi-Z-Source Single-Phase Inverter PV System and Simulation Results......Page 274
9.2.3.3 A Single-Phase Z-Source Inverter PV System and Simulation Results......Page 277
9.3.1 Introduction......Page 279
9.3.2.1 Z-Source Inverter for the Wind Power System......Page 280
9.3.2.2 Simulation Results of a ZSI-Based Wind Power System......Page 283
9.3.3 Quasi-Z-Source Inverter......Page 285
9.4.1 Introduction......Page 287
9.4.3 Z-Source Inverter-Based Permanent Magnet Synchronous Motor......Page 288
9.4.5 Modified Z-Source Inverter-Based Three-Phase Induction Motor Drive......Page 289
References......Page 291