Impact of COVID-19 on Emerging Contaminants: One Health Framework for Risk Assessment and Remediation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The book brings out several unique perspectives of impacts of COVID-19 on the environment with special emphasis on the risk and remediation of emerging contaminants. Idea is to work out under the one health framework and comprehend not only scientific and technical aspects but also environmental, legal and policy aspects for water resources management. The obvious stress is given to the occurrence, fate and transport of geogenic, microbial and anthropogenic contaminants of emerging concern under the preview of the fact that antibiotic and antiviral use has been unprecedented during the global pandemic of COVID-19. At the same time, this edited volume touches upon the broader framework of integrated water resource management, as well as mitigation and removal strategies to put forward a holistic picture to the readers and policymakers. These contents are divided into three sections: a) monitoring, occurrence, distribution and fate of emerging contaminants; b) source and effects of these contaminants on the total environment; and c) treatment strategies, natural attenuation and mitigation.


Author(s): Manish Kumar, Sanjeeb Mohapatra
Series: Springer Transactions in Civil and Environmental Engineering
Publisher: Springer
Year: 2022

Language: English
Pages: 437
City: Singapore

Foreword
Preface
Acknowledgements
Contents
Editors and Contributors
Part I Monitoring and Occurrence of Emerging Contaminants
1 A First Report of Perfluoroalkyl Substances (PFAS) in a Large West-Flowing River in Southern India
1.1 Introduction
1.2 Study Area
1.3 Materials and Methods
1.3.1 Water Sampling
1.3.2 PFSAs Extraction
1.3.3 Instrumental Analysis
1.3.4 Quality Control/Quality Assurance
1.4 Results and Discussions
1.4.1 Levels of PFAS in Other Stations
1.5 Conclusions
References
2 Passive Sampling Techniques for Monitoring of Pharmaceuticals and Personal Care Products in Water Matrix: Trends from 2016 to 2020
2.1 Introduction
2.2 Methods
2.3 Passive Sampling: Theory and Calibration
2.4 Polar Organic Chemical Integrative Samplers (POCIS)
2.5 DGT
2.6 Chemcatcher®
2.7 Conclusions and Future Perspectives
References
3 Distribution of Emerging Contaminants, and Antimicrobial Resistance: Occurrence, Toxicity, Risk Assessment, and Removal
3.1 Introduction
3.1.1 Occurrence, Source, and Fate of Pharmaceuticals and Personal Care Products (PPCPs)
3.2 Effect of PPCPs
3.2.1 Aquatic Life
3.2.2 Humans
3.3 Risk Assessment Studies
3.3.1 Risk Characterization
3.3.2 Constraints
3.4 Biological Remediation
3.4.1 Responsible Factors
3.4.2 Biodegradation Pathways
3.4.3 Intermediate Products Formation
3.4.4 Removal Efficiencies
3.5 Conclusions
References
4 Realistic Approach for Determination Groundwater Pollution and Source Accounting
4.1 Introduction
4.2 Sources of Groundwater
4.3 Sources of Groundwater Pollution
4.3.1 Groundwater Pollution by Natural Activities
4.3.2 Groundwater Pollution by Anthropogenic Activities
4.4 Groundwater Parameters
4.5 Impacts of Groundwater Pollution
4.6 Preventive Measures for Groundwater Pollution
4.6.1 Social Accountability
4.6.2 Industrial Accountability
4.7 Future Scopes
4.8 Conclusions
References
Part II Sources, Effects and Ecotoxicity of Emerging Contaminants
5 Emerging Contaminants: Sources, Effects, and Treatment by New Adsorption Methods
5.1 Introduction
5.2 ECs and Associated Health Risks
5.2.1 Pharmaceutical Debris-Based ECs
5.2.2 Personal Care Products-Based ECs
5.2.3 Pesticides, Biocides, and Antimicrobials-Based ECs
5.2.4 Polycyclic Aromatic Hydrocarbon-Based ECs
5.2.5 Polychlorinated Biphenyls and Dioxins-Based ECs
5.2.6 Dyes-Based ECs
5.3 Recognition, Assessment, and Management of ECs
5.3.1 Activated Carbon-Facilitated Adsorption
5.3.2 Biochar-Facilitated Adsorption
5.3.3 Nanomaterials-Facilitated Adsorption
5.4 Conclusions and Future Perspectives
References
6 Co-occurrence of Geogenic, Microbial, and Anthropogenic Emerging Contaminants: Ecotoxicity and Relative Environmental Risks
6.1 Introduction
6.1.1 Geogenic Emerging Contaminants (GECs)
6.1.2 Anthropogenic Emerging Contaminants (AECs)
6.1.3 Microbial Emerging Contaminants (MECs)
6.2 Co-occurrence of AECs, MECs, and GECs in Nature
6.3 Ecotoxicological and Relative Environmental Risks from AECs, MECs, and GECs
6.4 Conclusions
References
7 IoT as an Assistive Technology for Community-Based Water Management Practices During COVID-19 Pandemic and Beyond
7.1 Introduction
7.2 Research Methodology
7.3 Government Initiatives and Water Governance
7.3.1 Rainwater Harvesting
7.3.2 Atal Bhujal Yojana
7.3.3 Interlinking River Project
7.3.4 Need for Water Governance
7.4 Need and Role of IoT in Water Management
7.5 Community-Based Water Management Practices
7.5.1 Tanks in Karnataka
7.5.2 Stepwell
7.5.3 Pyne-Ahar
7.5.4 Kuls and Khuls
7.5.5 Tanka
7.5.6 Bamboo Drip Irrigation
7.6 Discussion and Strategies
7.6.1 Strategies to Improve Water Management Using IoT
7.7 Conclusion
References
8 Water Pollution Hazards of Single-Use Face Mask in Indian Riverine and Marine System
8.1 Introduction
8.2 Current State of the Problem
8.3 Composition and Different Types of Face Masks
8.3.1 Surgical Facemask
8.3.2 N95 Facemasks
8.3.3 KN95 Facemask³
8.4 Occurrence, Fate, and Transport of Masks in Water Bodies
8.4.1 Occurrence and Detection of Micro and Nano-Plastics from Masks
8.4.2 Interaction Between Microplastics and Other Pollutants
8.4.3 Transformation and Proliferation of Antimicrobial Resistance Bacteria
8.4.4 Rivers as Transport Pathways to the Ocean
8.4.5 Partitioning and Mass Flow Behaviour in Riverine and Marine Systems
8.5 Hazards of Used Facemask on Marine Life and Human Health
8.6 Risk of COVID Spreading Through Water Bodies
8.7 Biohazard Risk Mitigation Guidelines
8.8 Future Steps to Control Microplastic Pollution Through Facemasks
8.9 Future Direction and Conclusion
References
9 Impact of Arabidopsis thaliana Root Exudates on Dissimilatory Nitrate Reduction to Ammonium (DNRA) Activities in Shewanella loihica PV-4 and Agricultural Soil Enrichments
9.1 Introduction
9.2 Materials and Methods
9.2.1 Root Exudates Collection from Arabidopsis thaliana Plant and Chemical Characterization
9.2.2 Synthesis of Artificial Root Exudates
9.2.3 Evaluation of the Effects of Arabidopsis thaliana Root Exudates or Artificial Root Exudates on the Denitrification-Versus-DNRA Regulation in Shewanella loihica Cultures
9.2.4 Evaluation of the Effects of A. thaliana Root Exudates or Artificial Root Exudates on the Denitrification-Versus-DNRA Competition in Agricultural Soil Microbial Extracts
9.2.5 Analytical Procedures for Measurement of N2O, NO3 - , NO2 - and NH4 +
9.2.6 Measurement of 15 NH4 + Produced from Reduction of 15 NO3 - Via DNRA
9.2.7 Statistical Analysis
9.3 Results
9.3.1 Effects of A. Thaliana Root Exudates and Artificial Root Exudates on the Dual NO3 - Reduction Pathways in S. loihica strain PV-4
9.3.2 Effects of Artificial Root Exudates on the NO3 - Fate in Agricultural Soil Enrichments
9.4 Discussion
9.5 Implications and Future Research
9.6 Conclusions
References
10 Microalgal Bioremediation of Emerging Contaminants in Domestic Wastewater
10.1 Introduction
10.2 Source and Occurrence of Emerging Contaminants
10.3 Algae-Based Domestic Sewage Treatment
10.4 Bioremediation of Emerging Contaminants
10.4.1 Bioadsorption of ECs
10.4.2 Bioaccumulation of ECs
10.4.3 Intracellular and Extracellular Biodegradation of ECs
10.4.4 Novel Approaches
10.5 Future Scenario
10.6 Conclusions
References
Part III Conventional and Advanced Treatment Strategies
11 Emerging Contaminants in Water and Wastewater: Remediation Perspectives and Innovations in Treatment Technologies
11.1 Introduction
11.2 Emerging Contaminants as Aquatic Environmental Hazards
11.3 Treatment Technologies
11.4 Advantages and Challenges in Conventional Treatment Technology
11.5 Advance Treatment Technology
11.5.1 Removal by Adsorption
11.5.2 Membrane-Based Processes
11.5.3 Advanced Oxidation Processes (AOPs)
11.6 Combined Treatment Technology
11.7 Future Research Perspectives
11.8 Conclusion
References
12 Adsorption–Photocatalysis Dual-Modality Approach for Removal of PPCPs from Aquatic Environment
12.1 Introduction
12.2 Adsorption–Photocatalysis—Dual-Modality Approach
12.3 Photocatalysts Used for Environmental Remediation
12.4 Application to Real Water Matrices
12.5 Challenges in Designing Adsorption–Photocatalysis Material
12.6 Concluding Remark and Future Needs
References
13 Components of Aquaculture as Sources of Environmental Pollution and Available Remedial Measures
13.1 Introduction
13.2 Aquaculture Components as Sources of Pollution
13.2.1 Aquaculture Ingredients (Feed, Fertilizer, Chemicals, Etc.)
13.2.2 Animal Excretions (Faeces, Ammonia, Methane, CO2 Etc.)
13.2.3 Inedible Wastes
13.3 Remedial Measures for Aquaculture Waste Removal
13.3.1 Innovative Culture Methods
13.3.2 Physical, Chemical, and Microbial Treatment of Wastewater
13.3.3 Using Aquaculture Wastewater for Irrigating Agriculture Crops
13.3.4 Using Aquaculture Wastewater for Culturing Algae (Algiculture)
13.4 Conclusions
References
14 Recent Advances in Wetland-Based Tertiary Treatment Technologies for PPCPs Removal from Wastewater
14.1 Introduction
14.2 Occurrence of PPCPs in Wastewater and STPs
14.3 Existing Treatment Technologies for PPCPs Removal
14.3.1 Constructed Wetlands (CWs) for PPCPs Removal
14.3.2 PPCPs Properties Affecting the Removal Pathway during Treatment by CWs
14.4 Feasibility of Hybrid Systems Comprising CWs Combined with Other Treatment Processes
14.4.1 Hybrid CW Systems
14.4.2 Hybrid Treatment Systems Combining CW with Other Treatment Processes
14.4.3 Hybrid Systems Other Than CWs for PPCPs Removal
14.5 Conclusion and Future Prospects
References
15 Removal of Free Cyanide (CN−) from Water and Wastewater Using Activated Carbon: A Review
15.1 Introduction
15.2 Free Cyanide (CN−) Removal by Activated Carbon
15.2.1 Raw Activated Carbons for CN− Removal
15.2.2 CN− Removal by Metal Impregnated AC
15.2.3 Functional Group Incorporated AC for CN− Removal
15.2.4 Biological Conjugation of AC for Simultaneous Adsorption and Biodegradation
15.3 Mechanism of Cyanide Removal by Activated Carbon
15.3.1 Role of AC Surface Functional Groups on Adsorption and Oxidation Removal of Cyanide
15.3.2 Complexation of Cyanide with Metal Ions and Oxidation of M-CN Complexes
15.3.3 Adsorption and Oxidation Over Impregnated/Ionic Metal Surfaces
15.4 Modeling the Sorption of Cyanide onto Carbon Surface
15.4.1 Adsorption Isotherm Modeling
15.4.2 Kinetics Modeling
15.5 Effect of Process Parameters on Cyanide Adsorption Over Activated Carbon
15.5.1 Effect of Carbon Particle Size
15.5.2 Effect of Aeration/Agitation
15.5.3 Effect of Solution pH
15.5.4 Effect of Temperature
15.5.5 Effect of Contact Time
15.5.6 Effect of Competitive Anions
15.6 Regeneration of Cyanide Ladenned AC
15.7 Cost Evaluation on the Use of Activated Carbon for Treatment of Cyanide Bearing Water and Wastewater
15.8 Conclusions and Future Prospects
References
16 Metal Carbides as Photocatalyst for Removal of Organic Effluents from Aqueous Solution
16.1 A Brief Introduction to the Status of Water Pollution and Industrial Discharge
16.2 Fundamentals and Mechanism of Photocatalysis
16.3 Introduction to Transition Metal Carbides (TMCs)
16.4 Transition Metal Carbide: A Potential Candidate as a Catalyst
16.5 Preparation Techniques of TMCs: Low-Temperature Solid-State Reaction
16.6 Structural Properties of TMCs
16.7 TMCs: Remedy for Decomposition of Organic Pollutants
16.7.1 Effect of Concentration (Pollutant and Catalyst)
16.7.2 Effect of Illumination Source
16.7.3 Effect of catalyst’s Composition
16.8 Possible Degradation Mechanism
16.9 Concluding Remarks
References
17 Tackling COVID-19 in Wastewater: Treatment Technologies for Developing Nations
17.1 Introduction
17.2 Wastewater Treatment Processes for SARS-CoV-2 Control
17.2.1 SARS-CoV-2 in Wastewater
17.2.2 Surveillance of SARS-CoV-2 in Different Temperatures
17.2.3 Potential Fate of SARS-CoV-2 in the Water Cycle—Worldwide Perspective
17.2.4 Wastewater Treatment Technologies
17.3 Disinfection Techniques
17.3.1 Chlorine-Based Disinfection for SARS-CoV-2 Control
17.3.2 Ozonation
17.3.3 Ultraviolet (UV) Irradiation
17.3.4 Improvement of Disinfection Properties
17.3.5 Other Remedial Disinfection Actions to Control the Epidemic
17.4 Future Perspectives
17.5 Conclusion
References