This book provides an introduction to hypergraphs, its aim being to overcome the lack of recent manuscripts on this theory. In the literature hypergraphs have many other names such as set systems and families of sets. This work presents the theory of hypergraphs in its most original aspects, while also introducing and assessing the latest concepts on hypergraphs. The variety of topics, their originality and novelty are intended to help readers better understand the hypergraphs in all their diversity in order to perceive their value and power as mathematical tools. This book will be a great asset to upper-level undergraduate and graduate students in computer science and mathematics. It has been the subject of an annual Master's course for many years, making it also ideally suited to Master's students in computer science, mathematics, bioinformatics, engineering, chemistry, and many other fields. It will also benefit scientists, engineers and anyone else who wants to understand hypergraphs theory.
Table of Contents
Cover
Hypergraph Theory - An Introduction
ISBN 9783319000794 ISBN 9783319000800
Preface
Acknowledgments
Contents
1 Hypergraphs: Basic Concepts
1.1 First Definitions
1.2 Example of Hypergraph
1.2.1 Simple Reduction Hypergraph Algorithm
1.3 Algebraic Definitions for Hypergraphs
1.3.1 Matrices, Hypergraphs and Entropy
1.3.2 Similarity and Metric on Hypergraphs
1.3.3 Hypergraph Morphism; Groups and Symmetries
1.4 Generalization of Hypergraphs
References
2 Hypergraphs: First Properties
2.1 Graphs versus Hypergraphs
2.1.1 Graphs
2.1.2 Graphs and Hypergraphs
2.2 Intersecting Families, Helly Property
2.2.1 Intersecting Families
2.2.2 Helly Property
2.3 Subtree Hypergraphs
2.4 Conformal Hypergraphs
2.5 Stable (or Independent), Transversal and Matching
2.5.1 Examples:
2.6 K�nig Property and Dual K�nig Property
2.7 linear Spaces
References
3 Hypergraph Colorings
3.1 Coloring
3.2 Particular Colorings
3.2.1 Strong Coloring
3.2.2 Equitable Coloring
3.2.3 Good Coloring
3.2.4 Uniform Coloring
3.2.5 Hyperedge Coloring
3.2.6 Bicolorable Hypergraphs
3.3 Graph and Hypergraph Coloring Algorithm
References
4 Some Particular Hypergraphs
4.1 Interval Hypergraphs
4.2 Unimodular Hypergraphs
4.2.1 Unimodular Hypergraphs and Discrepancy of Hypergraphs
4.3 Balanced Hypergraphs
4.4 Normal Hypergraphs
4.5 Arboreal Hypergraphs, Acyclicity and Hypertree Decomposition
4.5.1 Acyclic Hypergraph
4.5.2 Arboreal and Co-Arboreal Hypergraphs
4.5.3 Tree and Hypertree Decomposition
4.6 Planar Hypergraphs
References
5 Reduction-Contraction of Hypergraph
5.1 Introduction
5.2 Reduction Algorithms
5.2.1 A Generic Algorithm
5.2.2 A Minimum Spanning Tree Algorithm (HR-MST)
References
6 Dirhypergraphs: Basic Concepts
6.1 Basic Definitions
6.2 Basic Properties of Directed Hypergraphs
6.3 Hypercycles in a Dirhypergraph
6.4 Algebraic Representation of Dirhypergraphs
6.4.1 Dirhypergraphs Isomorphism
6.4.2 Algebraic Representation: Definition
6.4.3 Algebraic Representation Isomorphism
References
7 Applications of Hypergraph Theory: A Brief Overview
7.1 Hypergraph Theory and System Modeling for Engineering
7.1.1 Chemical Hypergraph Theory
7.1.2 Hypergraph Theory for Telecomunmications
7.1.3 Hypergraph Theory and Parallel Data Structures
7.1.4 Hypergraphs and Constraint Satisfaction Problems
7.1.5 Hypergraphs and Database Schemes
7.1.6 Hypergraphs and Image Processing
7.1.7 Other Applications
References
Index
Author(s): Alain Bretto
Series: Mathematical Engineering
Edition: 2013
Publisher: Springer
Year: 2013
Language: English
Pages: 134
Cover......Page 1
Hypergraph Theory - An Introduction......Page 4
ISBN 9783319000794 ISBN 9783319000800......Page 5
Preface......Page 8
Acknowledgments......Page 10
Contents......Page 12
7 Applications of Hypergraph Theory: A Brief Overview......Page 16
1.2 Example of Hypergraph......Page 18
1.2.1 Simple Reduction Hypergraph Algorithm......Page 19
1.3.1 Matrices, Hypergraphs and Entropy......Page 22
1.3.2 Similarity and Metric on Hypergraphs......Page 24
1.3.3 Hypergraph Morphism; Groups and Symmetries......Page 33
1.4 Generalization of Hypergraphs......Page 35
References......Page 36
2.1.1 Graphs......Page 38
2.1.2 Graphs and Hypergraphs......Page 39
2.2.1 Intersecting Families......Page 44
2.2.2 Helly Property......Page 45
2.3 Subtree Hypergraphs......Page 48
2.4 Conformal Hypergraphs......Page 50
2.5 Stable (or Independent), Transversal and Matching......Page 52
2.5.1 Examples:......Page 53
2.6 König Property and Dual König Property......Page 54
2.7 linear Spaces......Page 56
References......Page 57
3.1 Coloring......Page 58
3.2.1 Strong Coloring......Page 60
3.2.3 Good Coloring......Page 62
3.2.5 Hyperedge Coloring......Page 63
3.2.6 Bicolorable Hypergraphs......Page 64
3.3 Graph and Hypergraph Coloring Algorithm......Page 69
References......Page 71
4.1 Interval Hypergraphs......Page 72
4.2.1 Unimodular Hypergraphs and Discrepancy of Hypergraphs......Page 75
4.3 Balanced Hypergraphs......Page 79
4.4 Normal Hypergraphs......Page 83
4.5 Arboreal Hypergraphs, Acyclicity and Hypertree Decomposition......Page 86
4.5.1 Acyclic Hypergraph......Page 87
4.5.3 Tree and Hypertree Decomposition......Page 90
4.6 Planar Hypergraphs......Page 93
References......Page 97
5.1 Introduction......Page 98
5.2.1 A Generic Algorithm......Page 99
5.2.2 A Minimum Spanning Tree Algorithm (HR-MST)......Page 105
References......Page 109
6.1 Basic Definitions......Page 110
6.2 Basic Properties of Directed Hypergraphs......Page 113
6.3 Hypercycles in a Dirhypergraph......Page 116
6.4.1 Dirhypergraphs Isomorphism......Page 122
6.4.3 Algebraic Representation Isomorphism......Page 123
References......Page 125
7.1 Hypergraph Theory and System Modeling for Engineering......Page 126
7.1.3 Hypergraph Theory and Parallel Data Structures......Page 127
7.1.5 Hypergraphs and Database Schemes......Page 128
7.1.6 Hypergraphs and Image Processing......Page 129
7.1.7 Other Applications......Page 130
References......Page 131
Index......Page 132