Arid and semi-arid regions are defined as areas where water is at its most scarce. The hydrological regime in these areas is extreme and highly variable, and they face great pressures to deliver and manage freshwater resources. However, there is no guidance on the decision support tools that are needed to underpin flood and water resource management in arid areas. UNESCO initiated the Global network for Water and Development Information for arid lands (GWADI), and arranged a workshop of the world's leading experts to discuss these issues. This book presents chapters from contributors to the workshop, and includes case studies from the world's major arid regions to demonstrate model applications, and web links to tutorials and state of the art modelling software. This volume is a valuable reference for researchers and engineers working on the water resources of arid and semi-arid regions.
Author(s): Howard Wheater, Soroosh Sorooshian, K. D. Sharma
Series: International hydrology series
Edition: 1
Publisher: Cambridge University Press
Year: 2008
Language: English
Pages: 223
City: Cambridge; New York
Cover......Page 1
Half-title......Page 3
Sereis-title......Page 4
Title......Page 5
Copyright......Page 6
Contents......Page 7
Contributors......Page 8
Preface......Page 10
Acknowledgements......Page 11
1.2 RAINFALL-RUNOFF MODELLING......Page 13
1.2.1 Metric models......Page 14
1.2.2 Conceptual models......Page 15
1.3 HYDROLOGICAL PROCESSES IN ARID AREAS......Page 16
1.3.1 Rainfall......Page 17
1.3.2 Rainfall-runoff processes......Page 21
1.3.3 Wadi-bed transmission losses......Page 22
1.3.4 Groundwater recharge from ephemeral flows......Page 23
1.4 HYDROLOGICAL MODELLING AND THE REPRESENTATION OF RAINFALL......Page 24
1.5 INTEGRATED MODELLING FOR WATER RESOURCE EVALUATION......Page 26
1.7 REFERENCES......Page 30
2.2 NEAR-GLOBAL PERSIANN PRECIPITATION DATA FOR HYDROLOGIC APPLICATIONS......Page 33
2.3 EVALUATION AND APPLICATIONS......Page 35
REFERENCES......Page 38
3.1 INTRODUCTION......Page 41
3.3.1 Rainfall data......Page 42
3.3.4 Water abstraction and land-use information......Page 43
3.4.1 Pitman monthly time-step model......Page 44
3.4.2 Namrom model......Page 46
3.4.4 VTI model......Page 47
3.5 MODELLING ENVIRONMENTS......Page 48
3.6.2 Available data......Page 50
REFERENCES......Page 51
4.2.1 Data availability......Page 53
4.2.2 Model structure......Page 54
4.3 NEW VERSION OF IHACRES......Page 55
4.4.2 Namoi River catchments......Page 56
4.4.3 Burdekin River......Page 58
4.7 REFERENCES......Page 59
5.1.2 AGWA......Page 61
5.2.1 Conceptual model elements......Page 62
5.2.2 Mathematical and numerical model......Page 64
5.3.1 Background......Page 72
5.3.2 Design......Page 73
5.3.3 Scenario building......Page 75
5.3.4 Example application: upper San Pedro River multi-scale assessment......Page 76
5.4.2 AGWA......Page 77
5.4.3 AGWA-KINEROS......Page 78
5.5 REFERENCES......Page 79
6.2 EPHEMERAL FLOW MODELLING......Page 81
6.2.1 Ephemeral flow modelling in the upland phase......Page 82
6.2.2 Ephemeral flow modelling in the channel phase......Page 83
6.2.3 Estimation of transmission losses......Page 84
6.3 MODELLING SEDIMENT DELIVERY......Page 89
6.3.1 Sediment delivery in upland phase......Page 90
6.3.2 Sediment delivery in the channel phase......Page 91
6.3.3 Model calibration......Page 92
6.3.4 Model validation......Page 93
6.4 CONCLUSIONS......Page 95
6.5 REFERENCES......Page 96
7.2.1 Process modules and models......Page 99
7.2.2 Loosely coupled models......Page 100
7.2.4 Decision-support systems (DSSs)......Page 101
7.3.3 Optimization and sensitivity analysis tools......Page 102
7.4.1 Ensemble Streamflow Prediction......Page 103
7.5.1 Watershed and River System Management Program (WARSMP)......Page 104
7.5.2 River DrĂ¢a, Morocco (34 609 km2) located in Morocco and no longer reaches the......Page 106
7.5.3 Heihe River, China......Page 108
7.7 REFERENCES......Page 109
8.2 CALIBRATION ISSUES......Page 111
8.3.1 The development and analysis of parsimonious moel structures......Page 113
8.3.2 The use of multiple performance criteria......Page 115
8.3.3 Abandoning the concept of a unique best-fit model......Page 116
8.5 REGIONALIZATION......Page 117
8.5.3 Multiple-regression regional analysis......Page 119
8.5.4 Conclusions from regionalization......Page 122
8.7 REFERENCES......Page 123
9.1 INTRODUCTION......Page 125
9.2 THE CATEGORIZATION OF RAINFALL-FLOW MODELS......Page 126
9.3 DATA-BASED MECHANISTIC (DBM) MODELLING......Page 128
9.4.1 Structure and order identification......Page 129
9.4.3 Conditional predictive validation......Page 130
9.5.1 The rainfall-flow component......Page 131
9.5.2 The flow-routing component......Page 132
9.6 PHYSICAL INTERPRETATION OF THE DBM MODEL......Page 133
9.7.1 State adaption......Page 134
9.7.2 Parameter adaption......Page 135
9.8 ILLUSTRATIVE PRACTICAL EXAMPLE......Page 136
9.8.1 DBM modelling......Page 137
9.8.2 Adaptive forecasting......Page 140
9.9 CONCLUSIONS......Page 141
APPENDIX I......Page 144
10.1 INTRODUCTION......Page 151
10.2.1 Brahmaputra River Basin......Page 152
10.2.4 Central India and Deccan Rivers Basin......Page 153
10.3.4 Dam-break flows......Page 154
10.5 DEVELOPMENT OF FLOOD FORECASTING IN INDIA......Page 155
10.7.2 Data transmission......Page 156
10.8.1 Statistical methods......Page 157
10.8.2 Deterministic methods......Page 163
10.9 FLOOD-FORECASTING STATUS IN ARID AND SEMI-ARID REGIONS OF INDIA......Page 164
10.11.2 Artificial neural-network models for real-time flood forecasting......Page 165
REFERENCES......Page 166
11.2 AQUIFERS AND WATER RESOURCES IN (SEMI)-ARID REGIONS OF INDIA......Page 169
11.2.2 Hard-rock aquifers......Page 170
11.2.3 Groundwater exploitation......Page 173
11.3.1 Application to hard-rock aquifers......Page 174
11.4.3 Hydrologic boundaries......Page 175
11.4.6 Anticipated future flow conditions......Page 176
11.5 APPLICATION OF GEOSTATISTICS TO AQUIFER MODELLING TO ASSESS UNCERTAINTY......Page 177
11.5.1 Estimation of the variogram......Page 178
11.5.2 Estimation of a regionalized variable by kriging......Page 179
11.6.1 The Maheshwaram watershed: a typical aquifer representing the groundwater conditions in a semi-arid region and hard-rock terrain......Page 180
11.6.3 Conceptualization of the hydogeological system......Page 183
11.6.6 Discussion of the simulated heads......Page 190
11.6.7 Discussion of the water storage capacity of the watershed and the probable evolution of its groundwater resources......Page 192
11.6.8 Conclusion......Page 195
11.7 DISCUSSION AND GENERAL CONCLUSIONS......Page 196
11.9 REFERENCES......Page 197
Appendix Access to software and data products......Page 203
Index......Page 205