Hybrid Renewable Energy Systems and Microgrids covers the modeling and analysis for each type of integrated and operational hybrid energy system. Looking at the fundamentals for conventional energy systems, decentralized generation systems, RES technologies and hybrid integration of RES power plants, the most important contribution this book makes is combining emerging energy systems that improve micro and smart grid systems and their components. Sections cover traditional system characteristics, features, challenges and benefits of hybrid energy systems over the conventional power grid, the deployment of emerging power electronic technologies, and up-to-date electronic devices and systems, including AC and DC waveforms. Conventional, emerging and hierarchical control methods and technologies applied in microgrid operations are covered to give researchers and practitioners the information needed to ensure reliability, resilience and flexibility of implemented hybrid energy systems. Presents detailed contents on emerging power networks provided by decentralized and distributed generation approaches Covers driving factors, photovoltaic based power plant modeling and planning studies Introduces hierarchical control methods and technologies applied in microgrid operations to ensure reliability, resilience and flexibility of hybrid energy systems
Author(s): Ersan Kabalci
Publisher: Academic Press
Year: 2020
Language: English
Pages: 526
City: London
Hybrid Renewable Energy Systems and Microgrids
Copyright
Contents
List of contributors
1 Introduction to power systems
1.1 Introduction
1.2 Fundamentals of electric power systems
1.2.1 Basics of power in ac systems
1.2.2 Kirchhoff’s laws
1.2.3 Instantaneous and complex power in ac systems
1.3 Balanced three-phase systems
1.3.1 Balanced Y connection
1.3.2 Balanced Δ connection
1.4 Per-unit system
1.5 Power generation and electric machines
1.5.1 The principles of electromechanical energy conversion
1.5.2 Generator operation of electric machines
References
2 Centralized power generation
2.1 Introduction
2.2 Hydropower power plant
2.2.1 Reservoir-based hydropower plants and dams
2.2.2 Pumped-storage hydropower
2.2.3 Hydraulic turbines
2.3 Thermal power plants
2.3.1 Coal-fired power plants
2.3.2 Gas-fired power plants
2.3.3 Gas-turbine principle
2.4 Nuclear power plant
2.4.1 Nuclear fission
2.4.2 Fusion
2.4.3 Nuclear fission reactors
2.4.3.1 Boiling water reactor
2.4.3.2 Pressurized water reactor
2.4.3.3 The pressurized heavy-water reactor (Canada Deuterium Uranium)
2.4.3.4 Gas-cooled reactors
References
3 Distributed generation and microgrids
3.1 Introduction
3.2 Microgrid
3.3 Distributed generation
3.3.1 Diesel generator
3.3.2 Microturbine
3.3.3 Fuel cell
3.3.4 Wind turbine
3.3.5 Photovoltaic panel
3.4 The load model of the microgrid
3.5 Optimization algorithm
3.5.1 Objective functions
3.5.1.1 Loss index
3.5.1.2 Voltage index
3.5.2 Constraints
3.5.2.1 Distributed generation constraint
3.5.2.2 Voltage of busses constraint
3.5.3 Intelligent algorithm
3.5.3.1 Multiobjective gray wolf optimization algorithm
3.5.3.2 Fuzzy method
3.6 Numerical results
3.7 Conclusion
References
4 Renewable energy systems
4.1 Chapter overview
4.2 Photovoltaic power generation
4.2.1 Principles of solar radiation
4.2.1.1 Measuring radiation
4.2.2 Photovoltaic cell fundamentals
4.2.2.1 Solar module
4.2.3 Photovoltaic systems
4.3 Wind power generation
4.3.1 Wind resource
4.3.1.1 Wind shear
4.3.1.2 Wind direction
4.3.1.3 Turbulence
4.3.1.4 Wind speed histograms
4.3.1.5 Duration curve
4.3.1.6 Wind speed distributions
4.3.1.7 Wind atlas
4.3.1.8 Wind measurement and instrumentation
4.3.1.8.1 Wind speed measuring instrumentation
4.3.1.8.2 Wind direction measuring instrumentation
4.3.1.8.3 Vegetation indicators
4.3.2 Wind potential assessment (siting)
4.3.2.1 Hybrid power systems
4.3.2.2 Offshore wind energy
4.3.2.2.1 The offshore wind resource
4.4 Hydroelectric power generation
4.4.1 Conventional hydroelectric power
4.4.1.1 Measuring precipitation
4.4.1.2 System components
4.4.1.2.1 Dam, weir, or barrage
4.4.1.2.2 Intake
4.4.1.2.3 Penstock
4.4.1.2.4 Turbines
4.4.1.2.5 Outlet
4.4.1.2.6 Overall system
4.4.1.2.7 Regulation
4.4.1.3 Classification of hydroelectric plants
4.4.1.3.1 Low-head plants
4.4.1.3.2 Medium-head plants
4.4.1.3.3 High-head plants
4.4.1.4 Operation behavior
4.4.2 Hydrokinetic energy
4.4.2.1 Runoff measuring
4.4.2.2 Hydrokinetic energy exploitation systems
4.4.2.2.1 River current
4.4.2.2.2 Marine current
4.4.3 Wave energy
4.4.3.1 Wave energy exploitation systems
4.4.3.1.1 Tapered channel wave energy conversion device system
4.4.3.1.2 Oscillating water column system
4.4.3.1.3 Pelamis Wave Power
4.4.4 Tidal energy
4.4.4.1 Tidal energy exploitation systems
4.4.4.1.1 Tidal power station
4.4.4.1.2 Tidal stream
4.5 Biomass power generation
4.5.1 Biomass fundamentals
4.5.1.1 Biomass photosynthesis
4.5.1.2 Biomass sources
4.5.1.3 Potential energy crop production opportunities and challenges in the growing demand for biomass
4.5.1.4 Forest biomass energy plantations
4.5.2 Biomass characteristics
4.5.2.1 Composition of plant biomass
4.5.2.2 The energy content of biomass
4.5.2.3 Physical characteristics
4.5.2.4 Chemical characteristics
4.5.2.4.1 Proximate analysis
4.5.2.4.2 Polymeric composition
4.5.2.5 Heat value
4.5.3 Biomass conversion into useful energy
4.5.3.1 Prime mover systems and fuels
4.5.3.2 Cofiring of biomass in coal-fired power plants
4.5.3.3 Cofiring technologies
4.5.3.4 Performance and costs
4.5.3.5 Sustainability, potential, and barriers
4.6 Conclusion
References
5 Hybrid renewable energy sources power systems
5.1 Introduction
5.2 Renewable energy-based hybrid power system
5.3 PV–diesel–battery system overview
5.3.1 Technical and nontechnical challenges
5.3.1.1 Voltage impact
5.3.1.2 Harmonics
5.3.1.3 Impacts from PV inverters
5.4 Holistic planning approach for PV–diesel–battery system
5.4.1 Addressing stakeholders’ opinion
5.4.2 Power system optimization and techno-economic analysis
5.4.3 Integrating software-based analysis
5.4.4 Power quality analysis
5.5 Integrating PV forecasting mechanism
5.5.1 PV forecasting technologies
5.5.2 Short-term PV forecasting using sky imagery mechanism
5.5.3 Developing a proprietary forecasting tool
5.6 Share of other renewable resources in the energy mix
5.7 Conclusion
Acknowledgment
References
6 Power electronics for hybrid energy systems
6.1 Introduction
6.2 Classification
6.3 AC bus connected HES
6.4 DC-bus connected HES
6.5 DC-side integration of HES
6.5.1 Cascaded DC-connection
6.5.2 Series DC connection
6.5.3 Parallel DC connection
6.5.4 DC-side integrated hybrid energy storage systems
6.6 Three-port converters
6.7 DC–DC converter based
6.8 High-frequency link
6.9 Neutral-point-clamped multilevel converters with multiple energy sources
6.10 Cascaded and modular multilevel converters
6.11 Solid-state transformers
6.12 Summary
Acknowledgment
References
7 Photovoltaic power plant planning and modeling
7.1 Introduction
7.2 Photovoltaic plant planning for hybrid microgrids
7.2.1 Load matching index
7.2.2 Photovoltaic utilization index
7.2.3 Solar irradiance variability index
7.3 Hybrid microgrid design and photovoltaic plant planning
7.3.1 Synchronous versus inverter-based grid forming
7.3.2 Centralized versus decentralized control
7.3.3 Centralized versus distributed generation
7.3.4 AC versus DC coupling
7.4 Special technical considerations for hybrid microgrids
7.4.1 Management of photovoltaic intermittency
7.4.2 Management of excess photovoltaic output
7.4.3 Frequency stability
7.4.4 System strength
7.5 Conclusion
References
Appendix: Standard photovoltaic plant planning considerations
Site selection
Photovoltaic plant layout
Electrical system design
Mounting system design
Photovoltaic module and inverter selection
Energy yield simulations
Grid integration modeling
Environmental and social impacts
8 Wind power plant planning and modeling
8.1 Chapter overview
8.2 Wind resource
8.2.1 Impact of the height
8.2.2 Temperature and altitude correction for air density
8.3 Types of wind turbines
8.3.1 Horizontal axis wind turbines
8.3.2 Vertical axis wind turbines
8.3.3 System elements
8.3.3.1 The rotor
8.3.3.2 The gearbox
8.3.3.3 The generator
8.3.3.4 The yaw mechanism (horizontal axis wind turbine)
8.3.3.5 The tower
8.3.3.6 The foundations
8.4 Wind energy production estimate
8.4.1 Power in the wind
8.4.2 Betz limit
8.4.3 Airfoil fundamental concepts
8.4.3.1 Lift coefficient
8.4.3.2 Drag coefficient
8.4.3.3 Drag versus lift wind turbines
8.4.4 Wind speed distribution (Weibull and Rayleigh)
8.4.5 Wind turbine energy production estimates
8.5 Wind turbine control and hybrid systems
8.5.1 Wind turbine control systems
8.5.1.1 Standard control configurations
8.5.1.2 Advanced control methods
8.5.1.3 Power control
8.5.2 Hybrid power systems
8.5.2.1 Sizing of photovoltaic/wind hybrid renewable energy system
8.5.2.2 Optimization of photovoltaic/wind hybrid renewable energy system
8.5.2.3 Reliability analysis
8.5.2.4 Performance assessment
8.5.3 Particular operating conditions for the wind power plant
8.5.3.1 Operation in extreme climatic conditions
8.5.3.2 Special purpose applications
8.5.3.2.1 Water pumping
8.5.3.2.2 Wind-powered desalination
8.6 Environmental impacts of wind energy projects
8.6.1 Visual impact of wind turbines
8.6.2 Wind turbine noise
8.6.3 Bird and bat interaction with wind turbines
8.6.4 Other impact considerations
8.7 Economic and financing aspects of wind energy projects
8.7.1 Revenues and financing of wind energy projects
8.7.1.1 Average wind energy cost
8.7.1.2 Offsetting energy use and costs
8.7.1.3 Wind energy financial incentives
8.7.1.4 Production tax credits and investment tax credits
8.7.1.5 Equity capital and tax equity
8.7.1.6 Equity sponsor
8.7.2 Economic evaluation of wind energy projects
8.7.2.1 Simple payback
8.7.2.2 Net present value
8.8 Conclusion
References
9 Fuel cell and hydrogen power plants
9.1 Chapter overview
9.2 Fuel cells
9.2.1 Principle of operation
9.2.2 Construction of fuel cell stack
9.2.2.1 Electrical configuration
9.2.2.2 Physical configuration
9.2.3 Classification of fuel cell
9.2.3.1 Solid oxide fuel cell
9.2.3.2 Molten carbonate fuel cell
9.2.3.3 Phosphoric acid fuel cell
9.2.3.4 Alkaline fuel cell
9.2.3.5 Proton exchange membrane fuel cell
9.2.3.6 Direct methanol fuel cell
9.3 Hydrogen-based power plants
9.3.1 Hydrogen generation processes
9.3.1.1 Hydrogen generation from fossil fuel
9.3.1.1.1 Hydrogen from natural gas methane-steam reforming
9.3.1.1.2 Hydrogen from hydrocarbon partial oxidation
9.3.1.1.3 Hydrogen from coal gasification
9.3.1.2 Hydrogen generation from water
9.3.1.2.1 Water electrolysis
9.3.1.3 Hydrogen generation from biomass
9.3.1.4 Hydrogen generation from biological process
9.3.1.4.1 Microbial hydrogen production
9.3.1.4.2 Photobiological hydrogen production
9.3.2 Large scale stationary power plants
9.3.3 Hybrid distributed generation systems
9.3.3.1 FC as main power source in DG
9.3.3.2 FC as auxiliary power source in DG
9.3.4 Combined heat and power systems
9.4 FC energy system modeling
9.4.1 Fuel cell
9.4.2 DC–DC converter
9.4.3 Controller design
9.4.4 Simulation results
9.4.4.1 Results with constant resistive load
9.4.4.2 Results with variable resistive load
9.5 Conclusion
9.6 Nomenclature
References
10 Hybrid energy storage systems
10.1 Chapter overview
10.2 Hybrid energy storage system configuration classification
10.2.1 Passive configuration
10.2.2 Semiactive configuration
10.2.3 Series-active configuration
10.2.4 Parallel-active configuration
10.3 Control strategies for hybrid energy storage system configurations
10.4 Control of microgrid configuration based on solar photovoltaic–wind turbine, and hybrid energy storage system
10.4.1 Control of wind turbine
10.4.2 Control of solar photovoltaic
10.4.3 Control of Ni–Cd batteries
10.4.4 Control of SCs
10.4.5 Control of the interfacing inverter
10.4.5.1 Control for standalone operation mode
10.4.5.2 Control for grid-connected mode
10.5 Results and discussion
10.5.1 Performance at the DC bus
10.5.2 Performance at the AC bus
10.6 Conclusion
References
11 Control systems for hybrid energy systems
11.1 Chapter overview
11.2 Configuration of HES-based MG
11.2.1 AC/DC hybrid-MG configurations based on two ESs
11.2.2 AC/DC hybrid-MG configurations based on three ESs
11.2.3 AC/DC hybrid-MG configuration based on four ESs
11.3 AC/DC hybrid-MG configuration under study
11.3.1 Operation modes of selected AC/DC hybrid-MG configuration
11.4 Control for AC/DC hybrid-MG configuration
11.4.1 Hierarchical control
11.4.1.1 Primary control
11.4.1.1.1 Control of the variable speed wind turbine
11.4.1.1.2 Control of the solar photovoltaic system
11.4.1.1.3 Control of the variable speed diesel generator
11.4.1.1.4 Control battery storage system
11.4.1.1.5 Control of the AC/DC interfacing inverter
11.4.1.2 Secondary control
11.4.1.3 Tertiary control
11.5 Results and discussion
11.6 Conclusion
References
12 Microgrids and their control
12.1 Introduction
12.2 Primary controllers of DDERs and BESs
12.2.1 DDER’s primary controller
12.2.2 Battery energy storage systems’ primary controller
12.3 Microgrid’s secondary controller
12.3.1 Dynamic power ratio adjustment
12.3.2 Droop curve adjustment
12.3.3 Selection of a suitable internal balancing inductance
12.3.4 Corrective controller
12.3.5 Preventive controller
12.4 Network’s tertiary controller
12.4.1 Self-healing capability
12.4.2 Coupling of two microgrids
12.4.3 Coupling of more than two microgrids
12.4.3.1 Decision-making approach
12.4.3.2 Optimization approach
References
13 Demand-side management
13.1 Chapter overview
13.2 Demand-side management
13.2.1 Demand-side management categories
13.2.1.1 Energy efficiency
13.2.1.2 Demand response
13.2.1.3 Virtual power plants
13.2.1.4 Spinning reserve
13.2.2 Demand-side management stakeholders
13.2.3 Demand-side management drivers and benefits
13.2.4 Demand-side management cost-effectiveness
13.3 Demand response
13.3.1 Price-based demand-response programs
13.3.2 Incentive-based demand-response programs
13.3.3 Potential benefits
13.3.4 Limitation and barriers
13.4 Advanced demand-side management technologies
13.4.1 Smart loads and smart grids
13.4.2 Internet of Things
13.4.3 Blockchain-based demand-side management programs
13.5 Conclusion
References
Index