How to Read and Do Proofs: An Introduction to Mathematical Thought Processes

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Daniel Solow
Edition: 6th
Publisher: Wiley
Year: 2013

Language: English
Pages: 338
Tags: Математика;Математическая логика;

Title Page......Page 5
Copyright......Page 6
Contents......Page 7
Preface to the Student......Page 9
Preface to the Instructor......Page 11
Acknowledgments......Page 14
Part I: Proofs......Page 17
1: The Truth of It All......Page 19
2: The Forward-Backward Method......Page 27
3: On Definitions and Mathematical Terminology......Page 43
4: Quantifiers I: The Construction Method......Page 59
5: Quantifiers II: The Choose Method......Page 71
6: Quantifiers III: Specialization......Page 87
7: Quantifiers IV: Nested Quantifiers......Page 99
8: Nots of Nots Lead to Knots......Page 111
9: The Contradiction Method......Page 119
10: The Contrapositive Method......Page 133
11: The Uniqueness Methods......Page 143
12: Induction......Page 151
13: The Either/Or Methods......Page 163
14: The Max/Min Methods......Page 173
15: Summary......Page 181
Part II: Other Mathematical Thinking Processes......Page 195
16: Generalization......Page 197
17: Creating Mathematical Definitions......Page 215
18: Axiomatic Systems......Page 237
Appendix A: Examples of Proofs from Discrete Mathematics......Page 255
Appendix B: Examples of Proofs from Linear Algebra......Page 269
Appendix C: Examples of Proofs from Modern Algebra......Page 287
Appendix D: Examples of Proofs from Real Analysis......Page 305
Glossary of Math Terms and Symbols......Page 323
References......Page 332
Index......Page 334