Hopf algebras and polynomial invariants of combinatorial structures

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Jeffrey F. Green
Series: PhD thesis at University of Manchester
Year: 1993

Language: English

Abstract 5
Declaration 6
The Author 7
Acknowledgements 8
Introduction 9
1 Preliminaries 13
1.1 G raphs .......................................................................................................... 13
1.2 Graph Polynom ials ................................................................................... 16
1.3 Knots and Links ...................................................................................... 17
1.4 The Medial Construction .......................................................................... 20
2 Graph Polynomials and the Kauffman Bracket Polynomial 24
2.1 Graph Polynom ials ............................................................................... . 24
2.2 The Kauffman Bracket Polynom ial ...................................................... 35
3 Hopf Algebras and Delta Operators 41
3.1 Hopf Algebras .................... 41
3.2 Delta Operators .......................................................................................... 47
4 A Hopf Algebra for Link Diagrams 57
4.1 Colouring Link Diagrams ........................................................ 58
4.2 The Hopf Algebra ..................................................................................... 61
4.3 The Quotient Module ..................................................................... 64
4.4 Delta Operators ........................................................................................ 69
5 A Hopf Algebra for Graphs 75
5.1 The Hopf Algebra ....................................................................... 76
5.2 The Quotient M odule ............................................................................... 80
5.3 The Delta Operator .................................................................................. 85
6 A Hopf Algebra for Signed Graphs and the ^oo-polynomial 90
6.1 The -polynomial for Signed G raphs .............................................. 90
6.2 The Hopf Algebra for Signed G rap h s .................................................. 93
6.3 The Quotient Module ............................................................................... 95
7 A Hopf Algebra for Link Diagrams and a New Link Diagram
Invariant 99
7.1 The $oo-polynomial for Link D iagram s............................................... 99
7.2 The Hopf Algebra of Link Diagrams ......................................................... 101
7.3 The Quotient M odule ................................................................................... 103
7.4 The Medial Construction R evisited ......................................................... 107
8 Hopf Algebra and Polynomial Invariant Relationships 110
8.1 A Hopf Algebra for Link U niverses ......................................................... 110
8.2 The Bracket and 4/oo-Polynomials ............................................................ Ill
8.3 A Hopf Algebra for Planar G ra p h s .................... 112
8.4 A Hopf Algebra for Simple G ra p h s ......................................................... 114
8.5 Relations Between Hopf Algebras of G ra p h s ........................................ 117
A A Graded Hopf Algebra for Link Diagrams 122
B Some Calculations Concerning the ^ -polynom ial for Complete
Graphs 126
Bibliography 131