Homology theory on algebraic varieties

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Andrew H Wallace
Series: International series of monographs on pure and applied mathematics, v.6
Publisher: Pergamon Press
Year: 1958

Language: English
Commentary: Better version than libgen ID 277247
Pages: 124
City: New York

Cover......Page 1
Title Page......Page 4
Copyright......Page 5
CONTENTS......Page 6
INTRODUCTION......Page 8
1. Hyperplane sections of a non-singular variety......Page 10
2. A family of linear sections of W......Page 11
3. The fibring of a variety defined over the complex numbers......Page 16
4. Homology groups related to V(K)......Page 26
1. Statement of the results......Page 32
2. Proof of Theorem 11......Page 34
1. The choice of a pencil......Page 43
2. Notation......Page 46
1. Lefschetz's first main theorem......Page 52
3. Sketch proof of Theorem 19......Page 58
4. Some immediate consequences......Page 63
1. Deformation theorems......Page 65
2. Some remarks dh Theorem 19......Page 69
3. Formal verification of Theorem 19; the vanishing cycle......Page 71
4. Proof of Theorem 19, parts (1) and (2)......Page 73
5. Proof of Theorem 19, part (3)......Page 76
1. The automorphisms T,......Page 81
2. Explicit calculation of T......Page 85
3. The formula .........Page 90
1. Clockwise and anti-clockwise isomorphisms......Page 92
2. A special representative for......Page 96
3. Proof of Theorem 32......Page 97
4. Proof of Theorem 34......Page 99
1. Summary of results assumed......Page 106
2. The intersection and locus operators......Page 107
3. Direct decomposition for H_{r-1}(V_0,P)......Page 110
4. Direct decomposition of H_{r-1}(V_0)......Page 111
5. Proofs of Theorems 41 and 42......Page 115
REFERENCES......Page 124