Homology of the Lie algebra corresponding to a poset

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Iztok Hozo
Series: PhD thesis at The University of Michigan
Year: 1993

Language: English

D E D IC A T IO N ............................................................................................................. ii
LIST OF FIG U R E S ................................................................................................... v
CHAPTER
I. Partially Ordered S e t s ........................................................................... 1
1.1 Definitions ........................................................................................ 1
1.2 The homology of a poset .............................................................. 4
II. Homology of Lie A lg e b r a ...................................................................... 10
2.1 The notion of Lie algebra ............................................................... 10
2.2 Homology of a Lie algebra ........................................................... 14
2.3 Main computational methods ........................................................ 22
III. Inclusion of Poset Homology into Lie Algebra Homology . . 32
3.1 Definitions ........................................................................................ 32
3.2 Insertion map ..................................................................................... 35
3.3 Example of the insertion ................................................................. 39
IV. The Formula for Laplacian of a Linear P o s e t ............................... 42
4.1 Simplification .................................................................................. 42
4.2 The Formula ..................................................................................... 48
4.3 E xam ple ............................................................................................ 51
V. The Representation Theory of the Symmetric G roup .............. 54
5.1 Young tableaux ................................................................................. 54
5.2 Specht modules .................................................................................. 55
5.3 Restricted and induced representations ....................................... 58
5.4 The Littlewood-Richardson rule .................................................... 59
iii
VI. The Eigenvalues of the L a p la cia n ..................................................... 63
6.1 Definitions .......................................................................................... 63
6.2 Embedding of the L-block in CSn ................................................ 67
6.3 The Laplacian Ly ................................................................... 69
6.4 Centerpiece Theorem for Ly ......................................................... 82
6.5 Example ................................................. 108
6.6 Adding the L x ....................................................................................... Ill
6.7 Homology ................................................................................................. 130
B IB L IO G R A PH Y ........................................................................................................... 137