Homogeneous structures on Riemannian manifolds

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The central theme of this book is the theorem of Ambrose and Singer, which gives for a connected, complete and simply connected Riemannian manifold a necessary and sufficient condition for it to be homogeneous. This is a local condition which has to be satisfied at all points, and in this way it is a generalization of E. Cartan's method for symmetric spaces. The main aim of the authors is to use this theorem and representation theory to give a classification of homogeneous Riemannian structures on a manifold. There are eight classes, and some of these are discussed in detail. Using the constructive proof of Ambrose and Singer many examples are discussed with special attention to the natural correspondence between the homogeneous structure and the groups acting transitively and effectively as isometrics on the manifold.

Author(s): Franco Tricerri; Lieven Vanhecke
Series: London Mathematical Society lecture note series 83
Publisher: Cambridge University Press
Year: 1983

Language: English
Pages: 125
City: Cambridge

1. The theorem of Ambrose and Singer
2. Homogeneous Riemannian structures
3. The eight classes of homogeneous structures
4. Homogeneous structures on surfaces
5. Homogeneous structures of type T1
6. Naturally reductive homogeneous spaces and homogeneous structures of type T3
7. The Heisenberg group
8. Examples and the inclusion relations
9. Generalized Heisenberg groups
10.Self-dual and anti-self-dual homogeneous structures.