Higher Recursion Theory

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Hyperarithmetic theory is the first step beyond classical recursion theory. It is the primary source of ideas and examples in higher recursion theory. It is also a crossroad for several areas of mathematical logic: in set theory it is an initial segment of Godel's L; in model theory, the least admissible set after ; in descriptive set theory, the setting for effective arguments. In this book, hyperarithmetic theory is developed at length and used to lift classical recursion theory from integers to recursive ordinals (metarecursion). Two further liftings are then made, first ordinals ( -recursion) and then to sets (E-recursion). Techniques such as finite and infinite injury, forcing and fine structure and extended and combined Dynamic and syntactical methods are contrasted. Several notions of reducibility and computation are compared. Post's problem is answere affirmatively in all three settings. This long-awaited volume of the -series will be a "Must" for all working in the field.

Author(s): Gerald E. Sacks
Series: Perspectives in mathematical logic
Publisher: Springer
Year: 1990

Language: English
Pages: 489
City: Berlin; New York