Higher-Dimensional Knots According to Michel Kervaire

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Michel Kervaire wrote six papers which can be considered fundamental to the development of higher-dimensional knot theory. They are not only of historical interest but naturally introduce to some of the essential techniques in this fascinating theory. This book is written to provide graduate students with the basic concepts necessary to read texts in higher-dimensional knot theory and its relations with singularities. The first chapters are devoted to a presentation of Pontrjagin’s construction, surgery and the work of Kervaire and Milnor on homotopy spheres. We pursue with Kervaire’s fundamental work on the group of a knot, knot modules and knot cobordism. We add developments due to Levine. Tools (like open books, handlebodies, plumbings, …) often used but hard to find in original articles are presented in appendices. We conclude with a description of the Kervaire invariant and the consequences of the Hill–Hopkins–Ravenel results in knot theory. Keywords: Knots in high dimensions, homotopy spheres, complex singularities

Author(s): Françoise Michel, Claude Weber
Series: EMS Series of Lectures in Mathematics
Publisher: European Mathematical Society
Year: 2017

Language: English
Pages: 146