Higher Composition Laws

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Manjul Bhargava
Series: PhD thesis at Princeton University
Year: 2001

Language: English

A bstract ........................................................................................................................ iii
Acknowledgments ....................................................................................................... iv
1 Introduction 1
2 Q uadratic com position laws 5
2.1 On 2 x 2 x 2 cubes of integers ....................................................................... 5
2.1.1 The fundamental slicings ................................................................... 6
2.1.2 Composition of binary quadratic fo rm s ......................................... -7
2.1.3 Composition of 2 x 2 x 2 c u b e s ...................................................... 9
2.1.4 Composition of binary cubic fo rm s ................................................ 10
2.1.5 Composition of pairs of binary quadratic forms ........................ 11
2.2 Relations with ideal classes in quadratic orders ......................................... 12
2.2.1 The parametrization of quadratic rin g s ........................................ 12
2.2.2 The case of binary quadratic fo rm s ............................................... 13
2.2.3 The case of 2 x 2 x 2 cubes ............................................................. 14
2.2.4 The case of binary cubic forms .......................................................... 20
2.2.5 The case of pairs of binary quadratic form s .................................. 23
Appendix: Equivalence of the Cube Law and Gauss composition . . . 25
3 Cubic com position laws 27
3.1 On 2 x 3 x 3 boxes of integers ..................................................................... 28
3.1.1 The unique T-invariant Disc(A, B) ................................................ 29
3.1.2 The parametrization of cubic rin g s ................................................ 29
3.1.3 Cubic rings and 2 x 3 x 3 integer boxes ......................................... 31
3.1.4 Cubic rings and pairs of ternary quadratic form s ........................ 36
3.2 Resulting composition laws ............................................................................ 38
3.2.1 Composition of 2 x 3 x 3 integer matrices .................................. 38
3.2.2 Composition of pairs of ternary quadratic form s ........................ 40
4 The param etrization of quartic rings 42
4.1 Resolvent rings and param etrizations ........................................................ 43
4.1.1 The Sfc-closure of a ring of rank k ................................................... 43
4.1.2 The quadratic resolvent of a cubic rin g ......................................... 45
4.1.3 Cubic resolvents of a quartic rin g .................................................. -47
4.2 Quartic rings and pairs of ternary quadratic form s ................................. 50
4.2.1 The fundamental invariant Disc(A, B) ........................................ 50
4.2.2 How much of the structure of Q is determined by (A, B )? . . . 51
4.2.3 How much of the structure of R is determined by (-4, B)? . . . 56
4.2.4 Is R the cubic resolvent of Q ? ........................................................ 58
4.2.5 The main result .................................................................................... 58
4.2.6 The content of a rin g .......................................................................... 59
4.2.7 Invariant theory of pairs of ternary quadratic forms I I ................ 62
4.2.8 Isolating Q ........................................................................................... 65
4.2.9 Local behaviour ..................................................................................... 66
4.2.10 Maximal quartic rings.......... ................................................................. 69
5 The density of discrim inants of quartic rings and fields 74
5.1 On the class numbers of pairs of ternary quadratic fo rm s .................... 77
5.1.1 Reduction th eo ry ................................................................................ 78
5.1.2 Some further n o ta tio n ...................................................................... 80
5.1.3 Preliminary estimates .......................................................................... 80
5.1.4 Estimates on reducible pairs (.4, B ) ................................................ 82
5.1.5 Cutting the cusps ................................................................................ 89
5.1.6 Proof of Lemma 5.9 ............................................................................. 93
5.1.7 Computation of the fundamental volum e ...................................... 102
5.2 Pairs of ternary quadratic forms and Theorems 5 .1 -5 .4 ....................... 105
5.2.1 Nowhere overramified quartic field s ................................................ 106
5.2.2 A uniformity e stim a te ...................................................................... 107
5.2.3 Proofs of Theorems 5.1-5.4 ...................................................... 110
Appendix: The quadratic covariant Q ......................................................... 114
6 Conclusion 116
6.1 Higher composition laws and exceptional groups .................................... 116
6.2 Modular forms on exceptional groups ........................................................ 119
6.3 Higher composition laws and prehomogeneous vector spaces ............ 120
6.4 Computational applications ........................................................................ 121
Summary of higher composition la w s ........................................................ 122