Do you want to know how to design high efficiency RF and microwave solid state power amplifiers?Read this book to learn the main concepts that are fundamental for optimum amplifier design. Practical design techniques are set out, stating the pros and cons for each method presented in this text. In addition to novel theoretical discussion and workable guidelines, you will find helpful running examples and case studies that demonstrate the key issues involved in power amplifier (PA) design flow.Highlights include:Clarification of topics which are often misunderstood and misused, such as bias classes and PA nomenclatures.The consideration of both hybrid and monolithic microwave integrated circuits (MMICs).Discussions of switch-mode and current-mode PA design approaches and an explanation of the differences.Coverage of the linearity issue in PA design at circuit level, with advice on low distortion power stages.Analysis of the hot topic of Doherty amplifier design, plus a description of advanced techniques based on multi-way and multi-stage architecture solutions.High Efficiency RF and Microwave Solid State Power Amplifiers is:an ideal tutorial for MSc and postgraduate students taking courses in microwave electronics and solid state circuit/device design;a useful reference text for practising electronic engineers and researchers in the field of PA design and microwave and RF engineering.With its unique unified vision of solid state amplifiers, you won’t find a more comprehensive publication on the topic.
Author(s): Paolo Colantonio, Franco Giannini, Ernesto Limiti
Series: Microwave and Optical Engineering
Edition: 1
Publisher: Wiley
Year: 2009
Language: English
Pages: 520
Tags: Приборостроение;Твердотельная электроника;
Contents......Page 7
Preface......Page 13
About the Authors......Page 15
Acknowledgments......Page 17
1.1 Introduction......Page 19
1.2 Definition of Power Amplifier Parameters......Page 20
1.3 Distortion Parameters......Page 25
1.3.1 Harmonic Distortion......Page 27
1.3.3 Two-tone Intermodulation......Page 28
1.3.4 Intercept Point IPn......Page 31
1.3.5 Carrier to Intermodulation Ratio......Page 32
1.3.7 Adjacent Channel Power Ratio......Page 33
1.3.8 Noise and Co-Channel Power Ratio (NPR and CCPR)......Page 35
1.3.9 Multi-tone Intermodulation Ratio......Page 37
1.4 Power Match Condition......Page 38
1.5 Class of Operation......Page 41
1.6 Overview of Semiconductors for PAs......Page 43
1.7 Devices for PA......Page 46
1.7.1 Requirements for Power Devices......Page 47
1.7.2 BJT......Page 49
1.7.4 FET......Page 50
1.7.5 MOSFET......Page 51
1.7.6 LDMOS......Page 52
1.7.7 MESFET......Page 53
1.7.8 HEMT......Page 55
1.7.9 General Remarks......Page 58
1.8 Appendix: Demonstration of Useful Relationships......Page 60
1.9 References......Page 62
2.2 Design Flow......Page 67
2.3 Simplified Approaches......Page 75
2.4 The Tuned Load Amplifier......Page 81
2.5 Sample Design of a Tuned Load PA......Page 89
2.6 References......Page 100
3.1 Introduction......Page 103
3.2 Linear vs. Nonlinear Circuits......Page 105
3.3 Time Domain Integration......Page 106
3.3.1 Iterative Algorithm (Newton–Raphson and Fixed-point)......Page 109
3.4 Example......Page 110
3.4.2 Backward Euler Solution......Page 112
3.4.3 Steady-state Analysis and Shooting Method......Page 116
3.4.4 Example......Page 117
3.6 The Volterra Series......Page 119
3.6.1 Response to a Single-tone Excitation......Page 121
3.6.2 Response to a Two-tone Excitation......Page 122
3.6.3 The Probing Method......Page 124
3.6.4 Example......Page 125
3.6.5 Cascade of Systems......Page 128
3.7 The Fourier Series......Page 131
3.8 The Harmonic Balance......Page 132
3.8.1 Example......Page 138
3.8.2 Multi-tone HB Analysis......Page 140
3.9 Envelope Analysis......Page 141
3.10 Spectral Balance......Page 143
3.11 Large Signal Stability Issue......Page 144
3.12 References......Page 145
4.1 Introduction......Page 149
4.2 Passive Source/Load Pull Measurement Systems......Page 150
4.3 Active Source/Load Pull Measurement Systems......Page 155
4.3.2 Active Loop Technique......Page 156
4.4.1 Scalar Systems......Page 161
4.4.2 VNA Based Systems......Page 164
4.4.3 Six-port Reflectometer Based Systems......Page 166
4.5.1 Intermodulation Measurements......Page 169
4.5.2 Time-domain Waveform Load Pull......Page 171
4.6 Source/Load Pull Characterization......Page 174
4.7 Determination of Optimum Load Condition......Page 178
4.7.1 Example of Simplified Load Pull Contour......Page 182
4.7.2 Design of an Amplifier Stage using Simplified Load Pull Contours......Page 186
4.8 Appendix: Construction of Simplified Load Pull Contours through Linear Simulations......Page 187
4.9 References......Page 190
5.1 Introduction......Page 195
5.2 Power Balance in a PA......Page 196
5.3 Ideal Approaches......Page 199
5.3.2 Class F or Inverse Class F (Class F-1)......Page 200
5.3.3 Class E or General Switched-mode......Page 201
5.4 High Frequency Harmonic Tuning Approaches......Page 202
5.4.1 Mathematical Statements......Page 203
5.5 High Frequency Third Harmonic Tuned (Class F)......Page 208
5.6 High Frequency Second Harmonic Tuned......Page 214
5.7 High Frequency Second and Third Harmonic Tuned......Page 220
5.8 Design by Harmonic Tuning......Page 226
5.8.1 Truncated Sinusoidal Current Waveform......Page 229
5.8.2 Quadratic Current Waveform......Page 232
5.8.3 Rectangular Current Waveform......Page 234
5.9 Final Remarks......Page 237
5.10 References......Page 239
6.1 Introduction......Page 241
6.2 The Ideal Class E Amplifier......Page 242
6.3 Class E Behavioural Analysis......Page 243
6.4 Low Frequency Class E Amplifier Design......Page 248
6.5 Class E Amplifier Design with 50% Duty-cycle......Page 252
6.5.1 Practical Implementation and Variants of Class E Power Amplifiers......Page 255
6.5.2 High Frequency Class E Amplifiers......Page 258
6.6 Examples of High Frequency Class E Amplifiers......Page 263
6.6.1 C-Band GaAs Class E Amplifier......Page 264
6.6.2 X-Band GaAs Class E Amplifier......Page 265
6.6.3 S-Band GaN Class E Amplifier......Page 270
6.6.4 S-Band LDMOS Class E Amplifier......Page 272
6.7 Class E vs. Harmonic Tuned......Page 275
6.8 Class E Final Remarks......Page 278
6.9 Appendix: Demonstration of Useful Relationships......Page 279
6.10 References......Page 281
7.1 Introduction......Page 285
7.2 Class F Description Based on Voltage Wave-shaping......Page 286
7.3 High Frequency Class F Amplifiers......Page 291
7.3.1 Effects of Device Output Resistance Rds......Page 295
7.4 Bias Level Selection......Page 298
7.5 Class F Output Matching Network Design......Page 304
7.6 Class F Design Examples......Page 307
7.7 References......Page 313
8.1 Introduction......Page 315
8.2 Theory of Harmonic Tuned PA Design......Page 316
8.3 Input Device Nonlinear Phenomena: Theoretical Analysis......Page 321
8.4 Input Device Nonlinear Phenomena: Experimental Results......Page 327
8.5 Output Device Nonlinear Phenomena......Page 334
8.6 Design of a Second HT Power Amplifier......Page 339
8.7 Design of a Second and Third HT Power Amplifier......Page 346
8.8 Example of 2nd HT GaN PA......Page 353
8.9 Final Remarks......Page 354
8.10 References......Page 357
9.1 Introduction......Page 359
9.2 Systems Classification......Page 360
9.3 Linearity Issue......Page 363
9.4 Bias Point Influence on IMD......Page 365
9.5 Harmonic Loading Effects on IMD......Page 370
9.5.1 High Linearity and High Efficiency PA Design Process......Page 372
9.5.2 High Linearity and High Efficiency PA Design Example......Page 376
9.6 Appendix: Volterra Analysis Example......Page 380
9.7 References......Page 383
10.1 Introduction......Page 387
10.2 Device Scaling Properties......Page 388
10.3 Power Budget......Page 389
10.4 Power Combiner Classification......Page 391
10.5 The T-junction Power Divider......Page 395
10.5.1 Resistive Divider......Page 397
10.6 Wilkinson Combiner......Page 398
10.6.1 Two-way Equal Splitter Wilkinson Combiner/divider......Page 401
10.6.2 Two-way Unequal Splitter Wilkinson Combiner/divider......Page 403
10.6.3 Two-way Wilkinson with Arbitrary Impedances......Page 404
10.6.4 Other Two-way Wilkinson Structures......Page 405
10.6.5 Planarization of N-way Wilkinson Splitter/combiner......Page 406
10.6.6 Design Considerations on Wilkinson Splitter/combiner......Page 409
10.7.1 Branch-line......Page 413
10.7.2 Coupled Line Directional Couplers......Page 418
10.7.3 The Lange Coupler......Page 422
10.8 The 180° Hybrid (Ring Coupler or Rat-race)......Page 423
10.9 Bus-bar Combiner......Page 425
10.10.1 Three-way Power Divider with Variable Output Power Ratios......Page 427
10.10.3 Composite Coupler......Page 429
10.11.1 Tree Structures......Page 430
10.11.2 Travelling Wave Combiners......Page 435
10.11.3 Multiple-level Combiners......Page 437
10.13 Graceful Degradation......Page 438
10.14 Matching Properties of Combined PAs......Page 442
10.15 Unbalance Issue in Hybrid Combiners......Page 444
10.16.1 Three-port Networks......Page 445
10.17 References......Page 446
11.1 Introduction......Page 453
11.2 Doherty’s Idea......Page 454
11.2.1 Active Load Modulation......Page 456
11.2.2 Impedance Inverting Network Implementation......Page 457
11.3 The Classical Doherty Configuration......Page 458
11.4.1 Fourier Representation for the Drain Current Waveforms......Page 461
11.4.2 Behavioural Analysis......Page 465
11.5 Power Splitter Sizing......Page 479
11.6 Evaluation of the Gain in a Doherty Amplifier......Page 481
11.7 Design Example......Page 484
11.8.1 Different Drain Bias Voltages......Page 498
11.8.2 Doherty with Main Amplifier in Class F Configuration......Page 501
11.8.3 Multi-way Doherty Amplifiers......Page 505
11.8.4 Multi-stage Doherty Amplifiers......Page 507
11.9 References......Page 511
Index......Page 513
Wiley Series in Microwave and Optical Engineering......Page 517