High Density Data Storage: Principle, Technology, and Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascinating world of information technology in the future.

Author(s): Yanlin Song, Yanlin Song, Daoben Zhu
Publisher: World Scientific Publishing Company
Year: 2009

Language: English
Pages: 272

CONTENTS......Page 8
Preface......Page 6
1. Introduction......Page 10
2.1. Magnetic states of matter......Page 12
2.2. Magnetic hysteresis......Page 15
2.3. Magnetic anisotropy......Page 17
2.4. Temperature dependence......Page 18
2.4.2. Curie–Weiss law......Page 19
2.4.3. Van Vleck’s equation......Page 20
3. Conventional Magnetic Storage Technology and Its Challenge......Page 21
4.1. Perpendicular recording......Page 26
4.1.2. Perpendicular recording media......Page 27
4.1.3. Soft underlayer (SUL)......Page 29
4.2. Patterned media......Page 31
4.2.1. Fabrication of patterned media by lithography......Page 32
4.2.2. Magnetic properties......Page 36
4.2.3. Recording data in patterned media......Page 37
4.3.1. Chemical synthesis of nanoparticles......Page 40
4.3.2. Magnetic nanoparticle self-assembly......Page 44
4.4.1.1. Organic radicals......Page 45
4.4.1.2. Nitronyl-nitroxide-based organic magnets......Page 46
4.4.1.3. Fullerenes......Page 49
4.4.2.1. Charge transfer salts......Page 51
4.4.2.2. Metal–radical complexes......Page 53
4.4.2.3. Magnets with spins on organic moieties and metal ions providing exchange pathways......Page 54
4.5. Single molecule magnets......Page 55
5. Summary......Page 60
Acknowledgments......Page 61
References......Page 62
1. Introduction......Page 78
2. Materials for Optical Data Storage......Page 80
2.1.1. Diarylethenes......Page 81
2.1.1.1. Thermal stability......Page 82
2.1.1.2. Fatigue resistance......Page 83
2.1.1.3. Quantum yield......Page 84
2.1.2.1 Spiropyrans......Page 85
2.1.2.2. Spirooxazines......Page 87
2.1.3. Fulgides......Page 88
2.2. Biological material — bacteriorhodopsin......Page 89
2.2.1. Biological function and structure of bacteriorhodopsin......Page 90
2.2.2. Bacteriorhodopsin as a photochromic molecular material......Page 92
2.2.3.1. 3D data storage......Page 94
2.3. Photorefractive material......Page 96
2.4. Photopolymers......Page 99
3.1. Nondestructive......Page 100
3.1.1. Luminescence......Page 101
3.1.2. Infrared light......Page 104
3.1.3. Optical rotation......Page 106
3.1.4. Refractive index......Page 109
3.1.5. Gated reactivity......Page 110
3.2.1. Mixture of different photochromes......Page 112
3.2.2. Multicolor in a one-molecule system......Page 113
3.3. High SNR......Page 115
3.4. Photochromic polymers......Page 117
4.1. Beating the diffraction limit — SIL and SNOM......Page 119
4.1.1. Solid immersion lens (SIL)......Page 120
4.1.2. Scanning near-field optical microscopy (SNOM or NSOM)......Page 122
4.2.1. Two-photon volume information storage......Page 127
4.2.2.1. Principle of operation......Page 128
4.2.2.2. Materials for holographic data storage......Page 130
4.2.3. Persistent spectral hole burning......Page 131
5. Summary......Page 132
References......Page 134
1. Introduction......Page 146
2. Electroactive Materials for Information Storage and Their Mechanisms......Page 148
2.2. Organic materials......Page 149
2.2.1.1. Organic–inorganic complex materials......Page 150
2.2.1.2. Organic complexes......Page 153
2.2.1.3. Single-component organic material......Page 155
2.2.1.4. Polymer material......Page 159
2.2.2. Conformational change for conductance transition......Page 160
2.2.2.1. Diarylethene......Page 161
2.2.2.2. Spiropyran and spirooxazine......Page 163
2.2.2.3. Interlocked molecules......Page 166
2.2.3. Conductance transition based on oxidation and reduction reaction......Page 169
3.1. Scanning tunneling microscopy (STM)......Page 173
3.2. Atomic force microscopy (AFM)......Page 174
3.3. Cross-bar nanocircuits......Page 175
4.1. Carbon-nanotube-based nonvolative random access memory......Page 178
4.2. Spin-based information storage (processing)......Page 180
4.3. Multimode coupled techniques for multiresponsive information storage......Page 181
4.3.2. TPE–STM coupled dual mode recording......Page 182
4.3.3. Magneto-optoelectronic trimode recording......Page 184
5. Conclusion......Page 186
Acknowledgments......Page 187
References......Page 188
1. Introduction......Page 202
2. Molecular Electronics......Page 205
2.1. Molecular junctions......Page 207
2.1.1. STM-tip-based molecular junctions......Page 211
2.1.2. CAFM-tip-based molecular junctions......Page 214
2.1.3. Cross-bar molecular junctions......Page 215
2.1.4. Etching hole plus nanotube and nanopore molecular junctions......Page 228
2.1.5. Mechanically breaking wire, electromigration-induced breaking wire and electrochemically deposited nanowire junctions......Page 230
2.1.6. Nanoparticle-bridged molecular junctions......Page 235
2.1.7. Liquid-metal-droplet-based molecular junctions......Page 237
2.1.8. Charge transport mechanisms......Page 241
2.2. Three-terminal molecular devices......Page 243
2.3. Dendrimer-based memory devices......Page 244
3. Bioelectronics......Page 250
4. Nanoelectronics......Page 251
Acknowledgments......Page 253
References......Page 254
Index......Page 270