Hidden Markov Models: Estimation and Control (Stochastic Modelling and Applied Probability)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The aim of this book is to present graduate students with a thorough survey of reference probability models and their applications to optimal estimation and control. These new and powerful methods are particularly useful in signal processing applications where signal models are only partially known and are in noisy environments. Well-known results, including Kalman filters and the Wonheim filter emerge as special cases. The authors begin with discrete time and discrete state spaces. From there, they proceed to cover continuous time, and progress from linear models to non-linear models, and from completely known models to only partially known models. Readers are assumed to have basic grounding in probability and systems theory as might be gained from the first year of graduate study, but otherwise this account is self-contained. Throughout, the authors have taken care to demonstrate engineering applications which show the usefulness of these methods.

Author(s): Robert J. Elliott, Lakhdar Aggoun, John B. Moore
Series: Stochastic Modelling and Applied Probability
Publisher: Springer
Year: 1994

Language: English
Pages: 374
Tags: Приборостроение;Обработка сигналов;