The first complete introduction to health monitoring, encapsulating both technical information and practical case studies spanning the breadth of the subject.Written by a highly-respected figure in structural health monitoring, this book provides readers with the technical skills and practical understanding required to solve new problems encountered in the emerging field of health monitoring. The book presents a suite of methods and applications in loads identification (usage monitoring), in-situ damage identification (diagnostics), and damage and performance prediction (prognostics). Concepts in modelling, measurements, and data analysis are applied through real-world case studies to identify loading, assess damage, and predict the performance of structural components, as well as examine engine components, automotive accessories, aircraft parts, spacecraft components, civil structures and defence system components.In particular the book:provides the reader with a fundamental and practical understanding of the material;discusses models demonstrating the physical basis for health monitoring techniques;gives a detailed review of the best practices in dynamic measurements including sensing;presents numerous data analysis techniques using model- and signal-based methods;discusses case studies involving real-world applications of health monitoring;offers end-of-chapter problems to enhance the study of the topic for students and instructors; andincludes an accompanying website with MATLAB programs providing hands-on training to readers for writing health monitoring model simulation and data analysis algorithms. Health Monitoring of Structural Materials and Components is an excellent introductory text for newcomers to the subject as well as an excellent study tool for students and lecturers. Practitioners and researchers, those with a greater understanding and application of the technical skills involved, will also find this essential reading as a reference text to address current and future challenges in this field. The wide variety of case studies will appeal to a broad spectrum of engineers in the aerospace, civil, mechanical, machinery and defence communities.
Author(s): Douglas Adams
Edition: 1
Year: 2007
Language: English
Pages: 476
Health Monitoring of Structural Materials and Components......Page 3
Contents......Page 9
Preface......Page 15
Acknowledgments......Page 17
1.1 Basics of Health Monitoring......Page 19
1.2 Commercial Needs for Health Monitoring Technology......Page 21
1.3 Defense Needs for Health Monitoring Technology......Page 22
1.4 Technical Approach to Health Monitoring......Page 25
1.5 Definitions of Common Terminology......Page 29
1.6 Comparison of Nondestructive Testing (NDT) and Health Monitoring Techniques......Page 34
1.7 Potential Impact of Health Monitoring Technologies......Page 36
1.8 Overview of Technical Areas in Health Monitoring......Page 39
1.9 Summary......Page 41
References......Page 42
Problems......Page 43
2.1 Modeling Needs......Page 47
2.2.1 Component Vibration Models......Page 48
2.2.2 Vibration Natural Frequencies and Modal Deflection Shapes......Page 51
2.2.3 Free Vibration Response......Page 53
2.2.4 Forced Vibration Response (Frequency Response Models)......Page 55
2.2.5 Impedance and Compliance Models......Page 58
2.2.6 Transmissibility Forced Response Models......Page 62
2.2.7 Nonlinear Dynamic Models......Page 66
2.2.8.1 Analytical Solution for Longitudinal Waves......Page 70
2.2.8.2 Longitudinal Wave Propagation Finite Element Model......Page 72
2.2.8.3 Analytical Solution for Rod with Transverse Waves......Page 76
2.2.8.4 Transverse Wave Propagation Finite Element Model......Page 77
2.2.9 Wave Propagation Models (Two Dimensional)......Page 80
2.3 Data-Driven Models......Page 83
2.3.1.1 Direct Parameter Models......Page 84
2.3.1.2 Restoring Force and Phase-Plane Models......Page 86
2.3.1.3 Discrete Time Models......Page 89
2.3.2 Experimental Frequency Response Models......Page 92
2.3.2.1 Frequency Response Sensitivity Functions......Page 94
2.3.2.2 Virtual Force Models......Page 99
2.3.3 Experimental Modal Vibration Models......Page 102
2.4.1 External Mechanical Excitations......Page 106
2.4.1.1 Impulsive Excitations......Page 107
2.4.1.2 Narrowband Excitations......Page 109
2.4.1.3 Broadband Random Excitations......Page 110
2.4.2 Acoustic Pressure, Temperature and Other Environmental Loads......Page 112
2.5 Summary......Page 117
References......Page 119
Problems......Page 121
3.1.1 Fasteners and Joints......Page 125
3.1.2 Cracking......Page 127
3.1.3 Plastic Deformation, Penetration and Erosion......Page 130
3.1.4 Delamination, Debonding and Separation......Page 131
3.1.5 Creep and Buckling......Page 133
3.1.6 Corrosion and Oxidation......Page 134
3.1.6.1 Fiber Pull Out and Fiber Breakage......Page 135
3.1.8 Microstructural Changes......Page 137
3.2.1 Phenomenological Models......Page 138
3.2.2 Generalized Damage Growth Models......Page 139
3.3 Failure Models......Page 140
3.5 Summary......Page 142
Problems......Page 143
4.1 Measurement Needs......Page 145
4.2.1 Amplitude and Frequency Ranges......Page 147
4.2.2 Nature of Data......Page 151
4.2.3 Environmental Factors......Page 154
4.3.1 Durability......Page 155
4.3.2 Stability......Page 157
4.3.3 Directionality......Page 158
4.3.4 Frequency Range (Wavelength)......Page 159
4.4 Transducers......Page 163
4.4.1 Overview of Sensors and Actuators......Page 164
4.4.2.1 Resistance Strain Gauge Model......Page 168
4.4.2.2 Piezoelectric Accelerometer Model......Page 170
4.4.2.3 Transmission Models (Cable, Amplifier and Power Supply)......Page 173
4.4.3 Active Piezoelectric Transducers (Actuators)......Page 177
4.4.4 Other Types of Sensors......Page 180
4.4.5 Transducer Placement and Orientation......Page 181
4.4.5.1 Observability Criterion......Page 185
4.4.5.2 Controllability Criterion......Page 187
4.5 Data Acquisition......Page 188
4.5.1 Common Errors......Page 189
4.5.2 Aliasing......Page 192
4.5.3 Leakage......Page 196
4.5.4 Channel Limitations in Data Acquisition......Page 197
4.6 Summary......Page 198
References......Page 199
Problems......Page 201
5.2 Filter Data......Page 205
5.2.1 Time Domain Filters......Page 206
5.2.2 Frequency Domain Filters......Page 211
5.2.3 Spatial Filters......Page 212
5.3 Estimation of Unmeasured Variables (State Inference)......Page 219
5.4.1 Statistical (Nondeterministic) Analysis......Page 223
5.4.2 Deterministic Analysis......Page 228
5.5 Transformation of Data......Page 234
5.5.1 Spectral (Frequency) Analysis......Page 235
5.5.2 Higher-Order Spectral Analysis......Page 241
5.5.4 Time-Frequency Analysis......Page 244
5.6.1 Cyclic Averaging......Page 252
5.6.2 Frequency Response Function Estimation......Page 254
5.6.3 Averaging of Data in Rotating Systems......Page 258
5.7 Spatial Data Analysis......Page 260
5.7.1 Modal and Operational Deflection Patterns......Page 261
5.7.2 Transfer Path Analysis......Page 264
5.7.3 Multidirectional Data......Page 268
5.7.4 Triangulation......Page 272
5.8 Feature Extraction......Page 275
5.8.1 Model-Based Feature Extraction (Damage)......Page 276
5.8.2 Model-Based Feature Extraction (Loading)......Page 278
5.8.3 Dimensionality of Feature Sets......Page 280
5.8.4 Statistical Models for Features......Page 283
5.9 Variability Analysis......Page 288
5.10.1 Overview......Page 298
5.10.2 Estimation Errors......Page 299
5.10.3 Conditioning of Loads Identification Algorithms......Page 300
5.11.1 Damage Detection......Page 305
5.11.2 Damage Localization......Page 308
5.11.3 Damage Quantification......Page 310
5.12 Regression Analysis for Prognosis......Page 313
5.12.1 Physics-Based Methods......Page 314
5.13 Combining Measurement and Data Analysis......Page 315
5.14 Summary......Page 316
References......Page 317
Problems......Page 319
6.1.1 Data-Driven......Page 323
6.1.2 Physics-Based......Page 326
6.2 Gas Turbine Engine Wire Harness and Connector......Page 329
6.3 Fuselage Rivet Process Monitoring......Page 331
6.4 Large Engine Valve Assembly......Page 334
6.5 Suspension with Loosening Bolt......Page 337
6.6 Sandwich Panel Undergoing Combined Thermo-Acoustic Loading......Page 340
References......Page 345
Problems......Page 346
7.1.1.1 Passive Method......Page 347
7.1.1.2 Active Methods......Page 351
7.1.2 Gas Turbine Engine Wire Harness and Connector......Page 362
7.1.3 Suspension System......Page 367
7.2 Wave Propagation-Based Methods......Page 368
7.2.1 Wheel Spindle......Page 369
7.2.2 Ceramic Tile......Page 374
7.2.3 Gamma Titanium Aluminide Sheet......Page 377
7.2.4 Aluminum Plate......Page 382
7.3 Damage Identification Under Load......Page 385
7.3.1 Metallic Panel Under Thermo-Acoustic Loading......Page 387
7.3.2 Aluminum Plate Under Vibration Loading......Page 389
7.4 Summary......Page 393
References......Page 394
Problems......Page 395
8.1 S2 Glass Cylinder (Performance Prediction)......Page 397
8.2 Stability Bar Linkage (Damage Growth Modeling)......Page 401
References......Page 411
Problems......Page 412
Appendix A......Page 413
Appendix B......Page 439
Index......Page 473