Chapters are grouped according to subject matter. The first group discusses theory; the second considers instrumentation and measurements, and procedures for analyzing and testing systems subjected to shock and vibration. Vibration that is induced by ground motion and fluid flow is considered next; then methods of controlling shock and vibration; followed by chapters on packaging engineering to prevent equipment from being damaged in transit; on the theory and practice of equipment design; and on the effects of shock and vibration on humans. New material includes computer techniques for solving problems, new instrumentation based on microchip technology, advances in analysis of data and models, application of finite element methods, and test criteria and specifications.
Author(s): Cyril Harris, Allan Piersol
Series: McGraw-Hill handbooks
Edition: 5th ed
Publisher: McGraw-Hill
Year: 2002
Language: English
Commentary: eBook
Pages: 1458
City: New York
Front Matter......Page 2
About the Editors......Page 5
Preface......Page 6
Index......Page 0
Table of Contents......Page 8
Concepts of Shock and Vibration......Page 13
Control of Shock and Vibration......Page 14
Content of Handbook......Page 15
Symbols and Acronyms......Page 17
Characteristics of Harmonic Motion......Page 19
Appendix 1.1 Natural Frequencies of Commonly Used Systems......Page 21
Appendix 1.2 Terminology......Page 28
Translational Motion......Page 40
Rotational Motion......Page 41
Free Vibration without Damping......Page 42
Free Vibration with Viscous Damping......Page 44
Forced Vibration......Page 46
Forced Vibration without Damping......Page 47
Forced Vibration with Viscous Damping......Page 48
Degrees-of-Freedom......Page 58
Stiffness Coefficients......Page 59
Free Vibration......Page 60
Forced Motion......Page 62
Uniform Viscous Damping......Page 66
Uniform Mass Damping......Page 68
Lagrangian Equations......Page 69
System of Coordinates......Page 72
Equations of Small Motion of a Rigid Body......Page 73
Mass......Page 74
Center-of-Mass......Page 85
Moment and Product of Inertia......Page 86
Properties of Resilient Supports......Page 93
Equations of Motion for a Resiliently Supported Rigid Body......Page 94
One Plane of Symmetry with Orthogonal Resilient Supports......Page 98
Two Planes of Symmetry with Orthogonal Resilient Supports......Page 100
Three Planes of Symmetry with Orthogonal Resilient Supports......Page 107
Two Planes of Symmetry with Resilient Supports Inclined in One Plane Only......Page 109
Complete Decoupling of Modes Using Radially Inclined Resilient Supports......Page 111
Foundation-Induced Sinusoidal Vibration......Page 113
Body-Induced Sinusoidal Vibration......Page 118
Foundation-Induced Velocity Shock......Page 122
References......Page 127
Introduction......Page 128
Simple Spring-Mass System......Page 129
Stretched String with Concentrated Mass......Page 130
Belt Friction System......Page 131
Systems with Asymmetric Stiffness......Page 132
Free Vibration......Page 133
Response Curves for Forced Vibration of Systems with Symmetric Stiffness......Page 134
Response Curves for Forced Vibration of Systems with Asymmetric Stiffness......Page 136
Other Phenomena......Page 144
Exact Solutions......Page 145
Free Vibration......Page 146
Forced Vibration......Page 148
Chaotic Dynamics......Page 149
Duffing's Method......Page 150
Rauscher's Method......Page 151
The Perturbation Method......Page 152
The Method of Kryloff and Bogoliuboff......Page 153
The Ritz Method......Page 155
System with Linear Damping and General Restoring Forces......Page 158
Graphical Methods of Integration......Page 160
Phase-Plane Integration of Stepwise Linear Systems......Page 162
Phase-Plane Integration of Autonomous Systems with Nonlinear Damping......Page 164
Generalized Phase-Plane Analysis......Page 166
Stability of Periodic Nonlinear Vibration......Page 167
References......Page 171
Introduction......Page 173
Analytic Modeling......Page 174
General Description......Page 176
Hysteretic Whirl......Page 177
Whirl Due to Fluid Trapped in Rotor......Page 181
Dry Friction Whip......Page 183
Seal and Blade-Tip-Clearance Effect in Turbomachinery......Page 184
Propeller and Turbomachinery Whirl......Page 187
Lateral Instability Due to Asymmetric Shafting......Page 188
Lateral Instability Due to Pulsating Torque......Page 189
Lateral Instability Due to Pulsating Longitudinal Loads......Page 190
Stick-Slip Rubs and Chatter......Page 191
Bistable Vibration......Page 192
Unstable Imbalance......Page 193
References......Page 195
Forms of Dynamic Absorbers and Auxiliary Mass Dampers......Page 198
Ways of Expressing the Effects of Auxiliary Mass Systems......Page 199
The Influence of a Simple Auxiliary Mass System Upon a Vibrating System......Page 201
The Dynamic Absorber......Page 204
Auxiliary Mass Dampers......Page 206
Effect of Nonlinearity in the Spring of an Auxiliary Mass Damper......Page 216
Distributed Mass Absorbers......Page 218
The Dynamic Absorber......Page 221
Reduction of Roll of Ships by Auxiliary Tanks......Page 222
Reduction of Roll of Ships by Gyroscopes......Page 223
Auxiliary Mass Dampers Applied to Rotating Machinery......Page 224
Auxiliary Mass Dampers Applied to Torsional Vibration......Page 226
Dynamic Absorbers Tuned to Orders of Vibration Rather than Constant Frequencies......Page 228
Applications of Dampers to Multiple Degree-of-Freedom Systems......Page 234
Activated Vibration Absorbers......Page 235
The Use of Auxiliary Mass Devices to Reduce Transient and Self-Excited Vibrations......Page 236
References......Page 239
Free Vibration......Page 240
Longitudinal and Torsional Vibrations of Uniform Circular Rods......Page 245
Lateral Vibration of Straight Beams......Page 250
Lateral Vibration of Beams with Masses Attached......Page 264
Lateral Vibration of Plates......Page 267
Transfer Matrix Method......Page 279
Classical Solution......Page 282
Method of Virtual Work......Page 284
Vibration Resulting from Motion of Support......Page 286
References......Page 287
Introduction......Page 290
Differential Equation of Motion......Page 291
Methods of Solution of the Differential Equation......Page 292
Initial Conditions of the System......Page 304
Step-Type Excitation Functions......Page 305
Pulse-Type Excitation Functions......Page 311
Summary of Transient Response Spectra for the Single Degree-of-Freedom, Linear, Undamped System......Page 338
Single Degree-of-Freedom Linear System with Damping......Page 340
Damping Forces Proportional to Velocity (Viscous Damping)......Page 341
Constant (Coulomb) Damping Forces; Phase-Plane Method......Page 343
Phase-Plane-Delta Method......Page 344
Multiple Degree-of-Freedom, Linear, Undamped Systems......Page 346
General Investigation of Transients......Page 347
References......Page 348
Direct Central Impact of Two Spheres......Page 349
Hertz Theory of Impact of Two Solid Spheres......Page 350
Impact of a Solid Sphere on an Elastic Plate......Page 351
Transverse Impact of a Mass on a Beam......Page 353
Impact of a Rigid Body on a Damped Elastically Supported Beam......Page 354
Plastic Deformation Resulting from Impact......Page 358
References......Page 360
Mechanical Impedance of Vibratory Systems......Page 362
Basic Mechanical Elements......Page 363
Combinations of Mechanical Elements......Page 365
Kirchhoff's Laws......Page 367
Superposition Theorem......Page 369
Norton's Equivalent System......Page 370
Mechanical 2-Ports......Page 371
Measurements......Page 372
Applications......Page 373
References......Page 375
Random Vibration Analysis......Page 376
Probability Distribution Functions......Page 378
Moments of the Probability Distribution......Page 380
Gaussian (Normal) Distribution......Page 381
Correlation Functions......Page 382
Power Spectral Density......Page 383
Response of a Single Degree-of-Freedom System......Page 385
Response of Multiple Degree-of-Freedom Systems......Page 387
Level Crossings......Page 389
Cumulative Damage......Page 390
Statistical Energy Analysis......Page 391
Sea Modeling of Systems......Page 393
Mode Counts......Page 398
Damping Loss Factors......Page 400
Coupling Loss Factors......Page 401
Modal Excitations......Page 403
System Response Distribution......Page 404
Transient (Shock) Response Using Sea......Page 406
References......Page 407
Introduction......Page 408
Mass-Spring Transducers (Seismic Transducers)......Page 409
Acceleration-Measuring Transducers......Page 411
Accelerometer Requirements for Shock......Page 412
Resolution......Page 417
Amplitude Linearity and Limits......Page 418
Frequency Range......Page 419
Environmental Effects......Page 421
Principle of Operation......Page 422
Typical Piezoelectric Accelerometer Constructions......Page 425
Physical Characteristics of Piezoelectric Accelerometers......Page 427
Electrical Characteristics of Piezoelectric Accelerometers......Page 428
Low-Impedance Piezoelectric Accelerometers Containing Internal Electronics......Page 429
Effects of Temperature......Page 430
Principle of Operation......Page 431
Typical Piezoresistive Accelerometer Constructions......Page 432
Electrical Characteristics of Piezoresistive Accelerometers......Page 434
Force Gages......Page 437
Force-Gage Characteristics......Page 438
Laser Doppler Vibrometers......Page 439
Displacement Measurement System......Page 441
Fiber-Optic Reflective Displacement Sensor......Page 442
Differential-Transformer Pickups......Page 443
Servo Accelerometer......Page 444
Displacement Transducer (Proximity Probe)......Page 445
Variable-Capacitance-Type Accelerometer......Page 446
References......Page 447
Accelerometer Preamplifiers......Page 448
Detectors......Page 452
Vibration Meters......Page 457
Tape Recorders......Page 458
Analog-to-Digital Converters......Page 460
Antialiasing Filters......Page 461
Digital-to-Analog Conversion......Page 463
References......Page 464
Introduction......Page 465
Electrical Filters......Page 466
FFT Analyzers......Page 475
Analysis of Stationary Signals Using FFT......Page 485
Analysis of Nonstationary Signals......Page 492
Related Analysis Techniques......Page 498
References......Page 506
Measurement Planning......Page 507
Selecting the Transducer......Page 510
Transducer Mountings......Page 511
Transducers......Page 519
Overall System......Page 520
Cable and Wiring Considerations......Page 524
Cable Noise Generation......Page 525
Noise-Suppression Techniques......Page 526
Data Sheets for Logging Test Information......Page 528
References......Page 529
Introduction......Page 530
Types of Condition Monitoring Systems......Page 531
Establishing a Condition Monitoring Program......Page 532
Fault Detection in Rotating Machinery......Page 534
How Spectrum Changes Are Related to the Condition of a Machine......Page 535
Subsynchronous Components......Page 537
Harmonics of the Power Line Frequency......Page 538
Sideband Patterns Due to Modulation......Page 543
Harmonic Patterns Not Harmonically Related to the Rotational Speed......Page 545
Envelope Detection......Page 546
Application of Cepstrum Analysis......Page 550
Application of Gated Vibration Analysis on Reciprocating Machines......Page 551
Trend Analysis......Page 552
References......Page 553
Introduction......Page 555
Transverse Sensitivity......Page 556
Temperature Effects......Page 557
Strain-Gage Selection Considerations......Page 558
Physical Environment......Page 559
Strain-Gage Measurements......Page 560
Displacement Measurement......Page 561
Velocity......Page 562
Pressure......Page 563
Strain-Gage Circuitry and Instrumentation......Page 565
Potentiometer Circuit......Page 566
Selection of Instruments for Strain Measurement......Page 567
References......Page 568
Pickup Sensitivity, Calibration Factor, and Frequency Response......Page 570
Calibration Traceability......Page 571
Comparison Methods of Calibration......Page 573
Reciprocity Method......Page 574
Calibration Using the Earth's Gravitational Field......Page 577
Centrifuge Calibrator......Page 578
Interferometer Calibrators......Page 579
Sinusoidal-Excitation Methods......Page 584
Shock-Excitation Methods......Page 585
Integration of Accelerometer Output......Page 588
Impact-Force Shock Calibrator......Page 589
Vibration Exciters Used for Calibration......Page 591
Mechanical Exciters......Page 592
Calibration of Transverse Sensitivity......Page 593
References......Page 595
Introduction......Page 598
Standards Activities......Page 599
Standards-Developing Organizations and Sources......Page 604
Environmental Specifications......Page 606
Shock and Vibration Environments......Page 607
Descriptions of Shock and Vibration Environments......Page 608
Development Tests......Page 609
Acceptance Tests......Page 610
Reliability Growth Tests......Page 611
Measurement or Prediction of Spectra......Page 612
Grouping of Measured or Predicted Spectra into Zones......Page 613
Determination of Zone Limits......Page 614
Selection of Final Test Levels......Page 616
Failure Models......Page 618
Compressing Time-Varying Service Environments......Page 619
Accelerated Tests......Page 620
Identification of Test Failures......Page 621
Types of Excitation......Page 622
Test Fixtures......Page 623
References......Page 624
Introduction......Page 626
Measurement Degrees-of-Freedom......Page 627
Basic Assumptions......Page 629
Modal Analysis Theory......Page 630
Single Degree-of-Freedom Systems......Page 631
Multiple Degree-of-Freedom Systems......Page 636
Experimental Modal Analysis Methods......Page 639
Modal Data Acquisition......Page 640
Digital Signal Processing......Page 641
Discrete Fourier Transform......Page 643
Test Environment Considerations......Page 644
Measurement Formulation......Page 645
Frequency Response Function Estimation......Page 646
Practical Measurement Considerations......Page 655
Modal Identification Concepts......Page 664
Modal Identification Algorithms (SDOF)......Page 686
Modal Identification Algorithms (MDOF)......Page 687
Measurement Synthesis......Page 691
Modal Vector Orthogonality......Page 692
Modal Vector Consistency......Page 693
Modal Complexity......Page 695
References......Page 696
Classifications of Vibration Data......Page 698
Overall Values......Page 700
Stationary Deterministic Vibrations......Page 701
Stationary Random Vibrations......Page 703
Nonstationary Deterministic Vibrations......Page 707
Nonstationary Random Vibrations......Page 708
Engineering Applications of Data Analysis......Page 710
Data Validation and Editing......Page 711
Data Storage......Page 712
Vibration Data Analysis Procedures......Page 713
Procedures for Stationary Deterministic Data Analysis......Page 714
Procedures for Stationary Random Data Analysis......Page 715
Procedures for Nonstationary Data Analysis......Page 721
References......Page 725
Basic Considerations......Page 726
Acceleration Impulse or Step Velocity......Page 728
Acceleration Step......Page 729
Decaying Sinusoidal Acceleration......Page 730
Data Reduction to the Frequency Domain......Page 731
Data Reduction to the Response Domain......Page 735
Shock Response Spectrum......Page 750
References......Page 751
Source of Ground Motion......Page 752
Response of Simple Structures to Ground Motions......Page 753
Earthquake Ground Motion......Page 756
Elastic Systems......Page 757
Design Response Spectra......Page 760
Response Spectra for Inelastic Systems......Page 762
Use of Response Spectra......Page 764
General Considerations......Page 765
Effects of Design on Behavior and on Analysis......Page 766
Design Lateral Forces......Page 768
Gravity Loads......Page 769
Simulation Testing......Page 770
Equipment and Lifelines......Page 771
Introduction......Page 774
Direct-Drive Mechanical Vibration Machines......Page 775
Prominent Features......Page 776
Circular-Motion Machine......Page 777
Rectilinear-Motion Machine......Page 778
Prominent Features......Page 779
General Description......Page 780
Induction-Type Shaker......Page 781
Frequency Response Considerations......Page 782
Characterization of an Electrodynamic Shaker as a Two-Port Network......Page 783
System Ratings......Page 785
Specifications......Page 786
Operating Principle......Page 789
Piezoelectric Vibration Exciters......Page 791
Impact Exciters......Page 792
Multiple Shakers Driving a Single Test Item......Page 793
Vibration Fixtures......Page 794
References......Page 795
Introduction......Page 796
Damage Potential and Shock Response Spectra......Page 797
Calibration......Page 798
Specifying a Shock Test......Page 799
Characteristic Types of Shocks......Page 800
Simple Shock Pulse Machines......Page 802
Complex Shock Pulse Machines......Page 805
Multiple-Impact Shock Machines......Page 808
References......Page 809
Introduction......Page 810
Comparison of Near-Field and Far-Field Characteristics......Page 811
Test Techniques for Near- and Far-Field Pyroshock......Page 813
Quantifying Pyroshock for Test Specification......Page 814
Measurement Techniques......Page 816
Pyrotechnically Excited Near-Field Simulation......Page 817
Mechanically Excited Far-Field Simulation......Page 819
References......Page 827
Introduction......Page 829
General Purpose......Page 830
Specialized Processors......Page 832
General-Purpose Programs......Page 838
Special-Purpose Applications......Page 841
Digital Shock and Vibration Data Analysis......Page 842
Digital Control Systems for Shock and Vibration Testing......Page 847
References......Page 862
Matrices......Page 865
Definitions......Page 866
Matrix Operations......Page 868
Quadratic Forms......Page 871
Formulation of Vibration Problems in Matrix Form......Page 873
Coupling of the Equations......Page 875
The Matrix Eigenvalue Problem......Page 876
Modal and Spectral Matrices......Page 877
Properties of the Solution......Page 878
Eigenvector Expansions......Page 879
Rayleigh's Quotient......Page 880
Free Vibration with Specified Initial Conditions......Page 882
Steady-State Forced Sinusoidal Vibration......Page 883
Response to General Excitation......Page 884
Complex Eigenvalue Problem......Page 885
Perturbation Approximation to Complex Eigenvalue Problem......Page 886
Formal Solutions......Page 887
Approximate Solutions......Page 889
References......Page 891
Application of Minimal Principles......Page 892
Typical Finite Elements......Page 895
Cut-Off Frequency and Grid Spacing......Page 899
Modal Density and Effectiveness of Finite Element Models......Page 900
Fundamental Dynamic Formulations......Page 901
Application of Normal Modes in Transient Dynamic Analysis......Page 902
Modal Truncation......Page 904
Applied Loads and Enforced Motions......Page 906
Strategies for Dealing with Large-Order Models......Page 908
Component Mode Synthesis Strategies......Page 911
Dynamic Response Resulting from Various Environments......Page 913
References......Page 915
Added Mass and Inertial Coupling......Page 917
Wave-Induced Vibration of Structures......Page 922
Vortex-Induced Vibration......Page 924
Fluid Elastic Instability......Page 930
Internal Flow in Pipes......Page 932
References......Page 935
Forms of Aerodynamic Excitation......Page 937
Basic Wind Characteristics......Page 940
Fundamentals of Response Prediction......Page 944
Gust-Factor Approach......Page 948
Effect of Gusts on Cladding and Windows......Page 950
Prediction of Vortex-Induced Oscillation......Page 951
Harmonic Excitation of Prismatic Cylinders by Vortices......Page 952
Random Excitation of Prismatic Cylinders by Vortices......Page 953
Random Excitation of Tapered Cylinders by Vortices......Page 955
Galloping Oscillations......Page 956
References......Page 960
Sound Sources......Page 963
Jet and Rocket Exhausts......Page 965
Propellers and Fans......Page 969
Turbulent Boundary Layer......Page 970
Linear Analysis......Page 972
Nonlinear Vibration......Page 977
Acoustic Fatigue......Page 979
Progressive Wave Tubes......Page 980
Reverberation Chambers......Page 981
References......Page 982
Concept of Vibration Isolation......Page 984
Form of Isolator......Page 985
Influence of Damping in Vibration Isolation......Page 988
Rigidly Connected Viscous Damper......Page 989
Rigidly Connected Coulomb Damper......Page 990
Elastically Connected Viscous Damper......Page 993
Elastically Connected Coulomb Damper......Page 995
System with Two Planes of Symmetry......Page 1001
Vibration Isolation in Coupled Modes......Page 1007
Inclined Isolators......Page 1012
Decoupling of Modes......Page 1013
Properties of a Biaxial Stiffness Isolator......Page 1014
Properties of Isolator with Respect to Arbitrarily Selected Axes......Page 1015
Influence Coefficient Transformation......Page 1017
Principal Influence Coefficients......Page 1018
Influence Coefficient Transformation from the Principal Axes......Page 1019
Nonlinear Vibration Isolators......Page 1021
Natural Frequency......Page 1022
References......Page 1026
Uncoupled Motions......Page 1027
Analogy Between Translation and Rotation......Page 1028
Classification of Shock Isolation Problems......Page 1029
Idealized Systems - Class I......Page 1030
Mathematical Equivalence of Class I and Class II Problems......Page 1031
Physical Basis for Velocity Step......Page 1032
General Form of Isolator Characteristics......Page 1033
Examples of Particular Isolator Characteristics......Page 1035
Response of Rigid Body System to Acceleration Pulse......Page 1042
Response to a Rectangular Pulse......Page 1043
Half-Sine Pulse......Page 1044
Comparison of Maximum Accelerations......Page 1045
Shock Response Spectrum......Page 1046
Impact with Rebound......Page 1048
Impact without Rebound......Page 1052
Equipment Rigidly Attached to Support......Page 1057
Equipment Shock Isolated......Page 1058
Types and Characteristics of Isolators......Page 1064
Elastomeric Isolators......Page 1065
Metal Springs......Page 1071
Air (Pneumatic) Springs......Page 1075
Isolators in Parallel......Page 1078
Important Factors Affecting Selection......Page 1079
How to Select Isolators......Page 1084
Examples......Page 1086
Avoiding Isolator Installation Problems......Page 1090
Shock and Vibration Isolator Specifications......Page 1091
An Active System for Resiliently Supporting a Body at Given Position Despite Variations in the Applied Load......Page 1092
An Active System for Controlling its System Resonance and Low-Frequency Vibration Isolation......Page 1094
References......Page 1104
Rubber Compounding......Page 1105
Elastomers......Page 1106
Anti-Degradents......Page 1107
Mixing......Page 1108
Stress-Strain......Page 1109
Tear......Page 1111
Low-Temperature Properties......Page 1112
Exposure to Ozone and Oxygen......Page 1113
Measurement of Dynamic Properties......Page 1114
Vibration Isolation and Damping......Page 1116
Fatigue Failure......Page 1119
References......Page 1121
Introduction......Page 1123
Static Properties......Page 1124
Temperature and Strain-Rate Effects......Page 1126
Critical Strain Velocity......Page 1129
Fatigue......Page 1130
Stress-Life Method......Page 1132
Strain-Life Method......Page 1137
Fracture Mechanics Method......Page 1138
Variable-Amplitude Loading......Page 1139
Cycle Counting......Page 1140
References......Page 1144
Basic Types of Composites......Page 1145
Continuous Fiber Composites......Page 1146
Special Design Issues and Opportunities......Page 1147
Composite Properties......Page 1150
In-Situ Properties......Page 1151
Laminated Composite Design......Page 1152
Failure Criteria......Page 1153
Coupling, Balance, and Symmetry......Page 1156
General Laminate Design Philosophy......Page 1158
Fatigue Performance......Page 1159
Safe Life/Reliability Method......Page 1162
Fail Safe/Damage Tolerance Method......Page 1167
The Wearout Model......Page 1168
Damping Characterization......Page 1170
References......Page 1175
Material Damping......Page 1176
Significance of Mechanical Damping as an Engineering Property......Page 1177
Stress-Strain (or Load-Deflection) Hysteresis Loop......Page 1178
Procedures Employing a Vibrating Specimen......Page 1179
Lateral Deflection of Rotating Cantilever Method......Page 1180
Fundamental Relationships......Page 1181
Relationship Between Specific Damping Energy and Stress Level......Page 1182
Volume-Stress Function......Page 1183
Ratio of Damping Energy to Strain Energy......Page 1184
Damping Properties of Materials......Page 1191
Dynamic Hysteresis of Viscoelastic Materials......Page 1194
Static Hysteresis......Page 1196
Comparison of Various Material Damping Mechanisms and Representative Data for Engineering Materials......Page 1198
Damping by Sliding......Page 1200
References......Page 1204
Introduction to the Role of Damping Materials......Page 1206
Polymeric and Elastomeric Materials......Page 1207
Analytical Modeling of Complex Modulus Behavior......Page 1209
Benefits of Applied Damping Treatments......Page 1210
Free-Layer Damping Treatments......Page 1211
Constrained-Layer Damping Treatments......Page 1213
Measures or Criteria of Damping......Page 1216
Comparison of Damping Measures......Page 1222
Methods for Measuring Complex Modulus Properties......Page 1223
References......Page 1227
Introduction......Page 1228
Modeling......Page 1229
Calculation of Polar Moments of Inertia......Page 1230
Calculation of Stiffness......Page 1232
Geared and Branched Systems......Page 1235
Natural Frequency Calculations......Page 1236
Transfer Matrix Method......Page 1237
Finite Element Method......Page 1238
Critical Speeds......Page 1241
General Excitation......Page 1242
Engine Excitation......Page 1243
Exact Method for Two Degree-of-Freedom Systems......Page 1244
Energy Balance Method......Page 1245
Application of Modal Analysis to Rotor Systems......Page 1248
Permissible Amplitudes......Page 1249
American Petroleum Institute......Page 1250
Data Acquisition......Page 1251
Shifting of Critical Speeds......Page 1252
Vector Cancellation Methods......Page 1253
Dampers......Page 1255
References......Page 1260
Basic Principles of Balancing......Page 1261
Rigid-Rotor Balancing - Static Unbalance......Page 1262
Rigid-Rotor Balancing - Dynamic Unbalance......Page 1263
Flexible-Rotor Balancing......Page 1264
Sources of Unbalance......Page 1270
Motions of Unbalanced Rotors......Page 1271
Operating Principles of Balancing Machines......Page 1272
Gravity Balancers......Page 1273
Centrifugal Balancing Machines......Page 1275
Classification of Centrifugal Balancing Machines......Page 1282
Unbalance Correction by the Addition of Weight to the Rotor......Page 1284
Unbalance Correction by the Removal of Weight......Page 1285
Maintenance and Production Balancing Machines......Page 1286
Field Balancing Equipment......Page 1287
Support of the Rotor......Page 1288
Drive for Rotor......Page 1289
Balance Criteria......Page 1290
Definitions......Page 1292
References......Page 1294
Introduction......Page 1296
Use of Spectrum Analysis in Studying Shaft Misalignment......Page 1297
Basic Steps in Shaft Alignment......Page 1298
Reference......Page 1300
Vibration Due to Inhomogeneities in the Workpiece......Page 1301
Disturbances in the Workpiece and Tool Drives......Page 1302
Impacts from Massive Part Reversals......Page 1307
Machine-Tool Chatter......Page 1308
Dynamic Stability......Page 1309
Stiffness......Page 1311
Damping......Page 1318
References......Page 1322
Environments and Requirements......Page 1323
Dynamic Environments......Page 1325
Other Environments......Page 1326
Life-Cycle Analysis......Page 1327
Dynamic Response Constraints and Failure Criteria......Page 1328
Structural Requirements......Page 1329
Other Requirements......Page 1330
Primary Structure......Page 1331
Interfaces and Joints......Page 1333
Subassemblies......Page 1335
Design Criteria......Page 1336
Design Excitation Magnitude......Page 1337
Design Life......Page 1338
Modeling......Page 1339
Preliminary Design Procedures......Page 1342
Final Design Procedures......Page 1345
Design Reviews......Page 1346
Model-Test Correlation......Page 1347
Reliability Growth Testing......Page 1349
References......Page 1350
Introduction......Page 1351
Methods and Instrumentation......Page 1352
Physical Measurements......Page 1353
Simulation of Human Subjects......Page 1354
Physical Data......Page 1356
Low-Frequency Range......Page 1358
Middle-Frequency Range (Wave Propagation)......Page 1367
High-Frequency Range......Page 1369
Effects of Mechanical Vibration......Page 1370
Effects of Mechanical Shock......Page 1373
Effects of Shock and Vibration on Task Performance......Page 1380
Protection Against Vibrations......Page 1381
Protection Against Rapidly Applied Accelerations (Crash)......Page 1384
Whole-Body Vibration Exposure......Page 1390
Acceptability of Building Vibration......Page 1396
Motion Sickness......Page 1398
Hand-Transmitted Vibration......Page 1399
Shock, Impact, and Rapid Deceleration......Page 1401
Biodynamics, Models, and Anthropometric Dummies......Page 1410
Protection Methods and Devices......Page 1411
Tolerance Criteria......Page 1412
A......Page 1413
B......Page 1415
C......Page 1417
D......Page 1420
E......Page 1424
F......Page 1426
G......Page 1428
H......Page 1429
I......Page 1430
J......Page 1431
L......Page 1432
M......Page 1433
N......Page 1436
O......Page 1437
P......Page 1438
Q......Page 1440
R......Page 1441
S......Page 1444
T......Page 1450
V......Page 1453
Z......Page 1458