Hands-On Q-Learning with Python: Practical Q-learning with OpenAI Gym, Keras, and TensorFlow

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Key Features Use Q-learning to train deep learning models using Markov decision processes (MDPs) Study practical deep reinforcement learning using deep Q-networks Explore state-based unsupervised learning for machine learning models Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you get familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into model-free Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym's CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in real-world applications such as scientific research. Toward the end, you'll gain a sense of what's in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow. What you will learn Explore the fundamentals of reinforcement learning and the state-action-reward process Understand Markov decision processes Get well-versed in libraries such as Keras and TensorFlow Create and deploy model-free learning and deep Q-learning agents with TensorFlow, Keras, and OpenAI Gym Choose and optimize a Q-network's learning parameters and fine-tune its performance Discover real-world applications and use cases of Q-learning If you are a machine learning developer, engineer, or professional who wants to delve into the deep learning approach for a complex environment, then this is the book for you. Proficiency in Python programming and basic understanding of decision-making in reinforcement learning is assumed.

Author(s): Nazia Habib
Publisher: Packt Publishing
Year: 2019

Language: English
Pages: 212
Tags: Artificial Intelligence, Machine Learning, Python

Brushing Up on Reinforcement Learning Concepts
Getting Started with the Q-Learning Algorithm
Setting Up Your First Environment with OpenAI Gym
Teaching a Smartcab to Drive Using Q-Learning
Building Q-Networks with TensorFlow
Digging Deeper into Deep Q-Networks with Keras and TensorFlow
Decoupling Exploration and Exploitation in Multi-Armed Bandits
Further Q-Learning Research and Future Projects Assessments