Since the publication of the first edition, miniaturization and nanotechnology have become inextricably linked to traditional surface geometry and metrology. This interdependence of scales has had profound practical implications. Updated and expanded to reflect many new developments, Handbook of Surface and Nanometrology, Second Edition determines how the reduction in scale of size from macro to nano has affected all aspects of surface use and measurement. The book discusses how this shift has extended through characterization, standardization, manufacture, and performance. With nanotechnology now permeating the text, this edition covers new methods of production and measurement as well as new performance requirements. Described as the father of digital metrology by the American Society for Precision Engineering, author David J. Whitehouse explores the range of surface size scales—macro, micro, nano, atomic, and combinations of these. He examines traditional, structured, patterned, and free-form surfaces, emphasizing the growing need to understand the behavior of multiple surfaces. Still the definitive reference in the field, the second edition of this handbook continues to provide in-depth, extensive coverage of the engineering, physics, materials, mathematics, and computing involved in surface metrology and nanometrology. Nothing concerning current surface geometry escapes inclusion or scrutiny in this book.
Author(s): David J. Whitehouse
Edition: 2
Publisher: CRC Press
Year: 2010
Language: English
Commentary: index missing
Pages: 978
Contents......Page 6
Preface......Page 22
Acknowledgments......Page 23
1.3 Background to Surface Metrology......Page 24
1.5 Book Structure......Page 25
2.1 The Nature of Surfaces......Page 28
2.2.1 General—Roughness Review......Page 30
2.2.2 Statistical Parameters and Random Process Analysis of Surface Roughness......Page 64
2.2.3 Methods of Characterization Using Amplitude Information......Page 94
2.2.4 Characterization Using Lateral Spatial Information......Page 102
2.2.5 Surface Texture and Non-Linear Dynamics......Page 121
2.3 Waviness......Page 123
2.4.1 Introduction......Page 129
2.4.2 Straightness and Related Topics......Page 130
2.4.3 Flatness......Page 133
2.4.4 Roundness......Page 137
2.4.5 Three-Dimensional Shape Assessment......Page 169
2.4.6 Cylindricity and Conicity......Page 173
2.4.7 Complex Surfaces......Page 184
2.5.1 General ISO 8785 Surface Defects......Page 187
2.6 Discussion......Page 188
References......Page 190
3.1.1 Sampling......Page 194
3.1.2 Quantization......Page 196
3.1.3 Effect of Computer Word Length......Page 197
3.1.4 Numerical Analysis—The Digital Model......Page 198
3.2.2 Definitions of a Peak and Density of Peaks......Page 200
3.2.4 Effect of Numerical Analysis on Peak Parameters......Page 201
3.2.5 Effect of Sample Interval on the Peak Density Value......Page 203
3.2.6 Digital Evaluation of Other Profile Peak Parameters......Page 205
3.2.8 Areal (3D) Filtering and Parameters......Page 209
3.2.9 Digital Areal (3D) Measurement of Surface Roughness Parameters......Page 211
3.2.10 Patterns of Sampling and Their Effect on Discrete Properties (Comparison of Three-, Four-, Five- and Seven-Point Analysis of Surfaces)......Page 215
3.2.11 Discussion......Page 221
3.3.1 Amplitude Probability Density Function......Page 222
3.3.3 Autocorrelation Function......Page 224
3.3.5 Power Spectral Density......Page 225
3.4.1 General......Page 226
3.4.2 Convolution Filtering......Page 227
3.4.3 Box Functions......Page 229
3.4.4 Effect of Truncation......Page 230
3.4.5 Alternative Methods of Computation......Page 231
3.4.6 Recursive Filters......Page 232
3.4.7 Use of the Fast Fourier Transform in Surface Metrology Filtering......Page 235
3.5 Examples of Numerical Problems In Straightness and Flatness......Page 236
3.6.1 Differences between Surface and Dimensional Metrology and Related Subjects......Page 237
3.6.2 Best-Fit Shapes......Page 238
3.6.3 Other Methods......Page 244
3.7.2 Dual Linear Programs in Surface Metrology......Page 246
3.7.3 Minimum Zone, Straight Lines, and Planes......Page 248
3.7.4 Minimax Problems......Page 250
3.8.1 General Properties......Page 251
3.8.2 Fast Fourier Transform......Page 252
3.8.3 General Considerations of Properties......Page 255
3.8.4 Applications of Fourier Transforms in Surface Metrology......Page 256
3.9.2 Hartley Transform......Page 258
3.9.3 Walsh Functions–Square Wave Functions–Hadamard......Page 259
3.10.2 Ambiguity Function......Page 260
3.10.3 Discrete Ambiguity Function (DAF)......Page 261
3.10.4 Wigner Distribution Function W (x, ω)......Page 262
3.10.5 Comparison of the Fourier Transform, the Ambiguity Function, and the Wigner Distribution......Page 265
3.10.6 Gabor Transform......Page 266
3.11.1 Profile Generation......Page 267
3.11.2 Areal Surface Generation......Page 269
3.12.1 General......Page 271
3.12.2 Mobile Cellular Automata MCA......Page 272
3.12.4 Molecular Dynamics......Page 274
3.13 Summary......Page 275
References......Page 276
4.1.1 Some Early Dates of Importance in the Metrology and Production of Surfaces......Page 278
4.2.1 The System......Page 280
4.2.2 Tactile Considerations......Page 281
4.2.3 Relationship between Static and Dynamic Forces for Different Types of Surface......Page 291
4.2.4 Mode of Measurement......Page 297
4.2.5 Other Stylus Configurations......Page 301
4.2.6 Metrology and Various Mechanical Issues......Page 304
4.2.7 Areal (3D) Mapping of Surfaces Using Stylus Methods......Page 317
4.3.1 Scanning Probe Microscopes (SPM) [or (SXM) for Wider Variants]......Page 324
4.3.2 General Characteristics......Page 327
4.3.3 Operation and Theory of the Scanning Probe Microscope (SPM)......Page 336
4.3.4 Interactions......Page 341
4.4.1 General......Page 345
4.4.2 Optical Followers......Page 349
4.4.3 Hybrid Microscopes......Page 353
4.4.4 Oblique Angle Methods......Page 358
4.4.5 Interference Methods......Page 359
4.4.6 Moiré Method......Page 374
4.4.7 Holographic Techniques......Page 376
4.4.8 Speckle Methods......Page 380
4.4.9 Diffraction Methods......Page 388
4.4.10 Scatterometers (Glossmeters)......Page 396
4.4.11 Scanning and Miniaturization......Page 400
4.4.12 Flaw Detection by Optical Means......Page 403
4.4.13 Comparison of Optical and Stylus Trends......Page 407
4.5.1 Areal Assessment......Page 408
4.5.2 Scanning Capacitative Microscopes......Page 409
4.5.4 Inductance......Page 410
4.5.6 Other Methods......Page 411
4.6.1 General......Page 415
4.6.2 Scanning Electron Microscope (SEM)......Page 417
4.6.4 Transmission Electron Microscope (TEM)......Page 420
4.6.5 Photon Tunneling Microscopy (PTM)......Page 422
4.6.6 Raman Spectroscopy......Page 423
4.7 Comparison of Techniques—General Summary......Page 424
4.8.1 Design Criteria for Instrumentation......Page 426
4.8.2 Kinematics......Page 427
4.8.3 Pseudo-Kinematic Design......Page 429
4.8.5 Linear Hinge Mechanisms......Page 430
4.8.6 Angular Motion Flexures......Page 432
4.8.7 Force and Measurement Loops......Page 433
4.8.8 Instrument Capability Improvement......Page 435
4.8.9 Alignment Errors......Page 436
4.8.10 Abbé Errors......Page 437
4.8.12 Systematic Errors and Non-Linearities......Page 438
4.8.13 Material Selection......Page 439
4.8.14 Noise......Page 440
4.8.15 Replication......Page 444
References......Page 445
5.2.1 Systematic Errors......Page 452
5.4.4 Factors Affecting the Environment......Page 453
5.5 Basic Error Theory for a System......Page 454
5.6.2 Random Errors......Page 455
5.7.1 Confidence Intervals for Any Parameter......Page 456
5.7.2 Tests for The Mean Value of a Surface—The Student t Test......Page 457
5.7.6 Tests of Measurements against Limits—16% Rule......Page 458
5.7.7 Measurement of Relevance—Factorial Design......Page 459
5.7.9 Methods of Discrimination......Page 461
5.8 Uncertainty in Instruments—Calibration in General......Page 462
5.9 Calibration of Stylus Instruments......Page 463
5.9.1 Stylus Calibration......Page 464
5.9.2 Calibration of Vertical Amplification for Standard Instruments......Page 467
5.9.3 Some Practical Standards (Artifacts) and ISO Equivalents......Page 470
5.9.4 Calibration of Transmission Characteristics (Temporal Standards)......Page 473
5.9.5 Filter Calibration Standards......Page 475
5.9.7 X-Ray Methods—Step Height......Page 477
5.9.8 X-Rays—Angle Measurement......Page 480
5.9.9 Traceability and Uncertainties of Nanoscale Surface Instrument "Metrological" Instruments......Page 481
5.10.1 Magnitude......Page 485
5.10.2 Separation of Errors—Calibration of Roundness and Form......Page 486
5.10.3 General Errors due to Motion......Page 490
5.11 Variability of Surface Parameters......Page 495
5.12.1 General......Page 497
5.12.3 Chain of Standards within the GPS......Page 498
5.12.4 Surface Standardization—Background......Page 503
5.12.5 Role of Technical Specification Documents......Page 505
5.12.7 International Standards (Equivalents, Identicals, and Similars)......Page 506
5.12.8 Category Theory in the Use of Standards and Other Specifications in Manufacture, in General, and in Surface Texture, in Particular......Page 508
5.13.2 Indications Generally—Multiple Symbols......Page 509
5.14 Summary......Page 510
References......Page 512
6.3.1 Turning......Page 516
6.3.2 Diamond Turning......Page 524
6.3.3 Milling and Broaching......Page 525
6.3.4 Dry Cutting......Page 528
6.4.1 General......Page 531
6.4.2 Types of Grinding......Page 534
6.4.3 Comments on Grinding......Page 535
6.4.4 Centerless Grinding......Page 536
6.4.5 Cylindrical Grinding......Page 538
6.4.6 Texture Generated in Grinding......Page 539
6.4.7 Other Types of Grinding......Page 541
6.4.8 Theoretical Comments on Roughness and Grinding......Page 543
6.4.9 Honing......Page 546
6.4.10 Polishing and Lapping......Page 547
6.5.1 General......Page 548
6.5.2 Ultrasonic Machining......Page 549
6.5.4 Physical and Chemical Machining......Page 550
6.6.1 General......Page 551
6.6.2 Surface Texture and the Plastic Deformation Processes......Page 552
6.6.3 Friction and Surface Texture in Material Movement......Page 554
6.7.1 General......Page 555
6.7.3 Nanomilling......Page 556
6.7.4 Nanofinishing by Grinding......Page 561
6.7.5 Micropolishing......Page 565
6.7.6 Microforming......Page 567
6.7.7 Three Dimensional Micromachining......Page 568
6.7.8 Atomic-Scale Machining......Page 569
6.8.1 Distinction between Conventional and Structured Surfaces......Page 576
6.8.2 Structured Surfaces Definitions......Page 577
6.8.3 Macro Examples......Page 578
6.8.4 Micromachining of Structured Surfaces......Page 581
6.8.5 Energy Assisted Micromachining......Page 588
6.8.6 Some Other Methods of Micro and Nanostructuring......Page 591
6.8.7 Structuring of Micro-Lens Arrays......Page 592
6.8.8 Pattern Transfer—Use of Stamps......Page 596
6.8.9 Self Assembly of Structured Components, Bio Assembly......Page 598
6.8.10 Chemical Production of Shapes and Forms-Fractals......Page 600
6.8.11 Anisotropic Chemical Etching of Material for Structure......Page 602
6.8.12 Use of Microscopes for Structuring Surfaces......Page 603
6.9.2 Ball End Milling......Page 606
6.9.3 Micro End-Milling......Page 609
6.9.4 Free Form Polishing......Page 610
6.9.5 Hybrid Example......Page 612
6.10.3 Molecular Dynamics......Page 613
6.10.4 Multi-Scale Dynamics......Page 614
6.10.5 NURBS......Page 616
6.11.1 General......Page 617
6.11.2 Brittle/Ductile Transition in Nano-Metric Machining......Page 618
6.12.1 Surface Effects Resulting from the Machining Process......Page 619
6.12.3 Residual Stress......Page 620
6.12.4 Measurement of Stresses......Page 628
6.12.5 Subsurface Properties Influencing Function......Page 630
6.13.1 General......Page 632
6.13.2 Use of Random Process Analysis......Page 633
6.13.3 Spacefrequency Functions (the Wigner Distribution)......Page 636
6.13.4 Application of Wavelet Function......Page 637
6.13.5 Non-Linear Dynamicschaos Theory......Page 639
6.13.6 Application of Non-Linear Dynamics—Stochastic Resonance......Page 642
6.14 Surface Finish Effects In Manufacture of Microchip Electronic Components......Page 643
References......Page 645
7.1.1 The Function Map......Page 652
7.1.2 Nature of Interaction......Page 655
7.2.1 Contact......Page 656
7.2.2 Macroscopic Behavior......Page 658
7.2.3 Microscopic Behavior......Page 661
7.2.4 Functional Properties of Normal Contact......Page 701
7.3.1 General......Page 717
7.3.2 Friction......Page 718
7.3.3 Wear—General......Page 738
7.3.4 Lubrication—Description of the Various Types with Emphasis on the Effect of Surfaces......Page 745
7.3.5 Surface Geometry Modification for Function......Page 772
7.3.6 Surface Failure Modes......Page 783
7.3.7 Vibration Effects......Page 792
7.4.1 General Mechanical Electical Chemical......Page 801
7.4.2 One Body with Radiation (Optical): The Effect of Roughness on the Scattering of Electromagnetic and Other Radiation......Page 809
7.4.3 Scattering by Different Sorts of Waves......Page 828
7.5.1 Surface Geometry, Tolerances, and Fits......Page 832
7.6 Discussion......Page 834
7.6.1 Profile Parameters......Page 835
7.6.3 Amplitude and Spacing Parameters......Page 838
7.6.4 Comments on Textured Surface Properties......Page 839
7.6.5 Function Maps and Surfaces......Page 840
7.6.6 Systems Approach......Page 842
7.6.7 Scale of Size and Miniaturization Effects of Roughness......Page 845
7.7 Conclusions......Page 848
References......Page 849
8.1.2 Nanotechnology and Engineering......Page 860
8.2.1 Metrology at the Nanoscale......Page 861
8.3.1 Effects on Mechanical and Material Properties......Page 868
8.3.2 Multiscale Effects—Nanoscale Affecting Macroscale......Page 874
8.3.3 Molecular and Atomic Behavior......Page 880
8.3.4 Nano/Microshape and Function......Page 885
8.3.5 Nano/Micro, Structured Surfaces and Elasto-Hydrodynamic Lubrication EHD......Page 890
8.3.6 Nanosurfaces—Fractals......Page 892
8.4.2 Nanomachinability......Page 895
8.4.3 Atomic-Scale Machining......Page 901
8.4.4 Chemical Production of Shapes and Forms......Page 906
8.4.5 Use of Microscopes for Structuring Surfaces......Page 908
8.4.6 General Nanoscale Patterning......Page 909
8.5.2 Instrument Trends—Resolution and Bandwidth......Page 910
8.5.3 Scanning Probe Microscopes (SPM), Principles, Design, and Problems......Page 911
8.5.4 Interactions......Page 921
8.5.5 Variants on AFM......Page 925
8.5.6 Electron Microscopy......Page 931
8.5.7 Photon Interaction......Page 935
8.6.3 Some Prerequisites for Nanometrology Instruments......Page 936
8.7.2 Calibration......Page 938
8.8.1 General......Page 945
8.8.2 Roughness......Page 946
8.8.3 Some Interesting Cases......Page 948
8.8.4 Extending the Range and Mode of Nano Measurement......Page 952
8.9.2 Capacitative Methods......Page 954
8.10.1 Freeform Macro Geometry, Nanogeometry and Surface Structure......Page 956
8.11.2 Conclusion about Nanometrology......Page 957
References......Page 958
9.2 Characterization......Page 965
9.4 Measurement Techniques......Page 966
9.6 Surfaces and Manufacture......Page 967
9.8 Nanometrology......Page 968
9.9 Overview......Page 969
B......Page 970
D......Page 971
F......Page 972
L......Page 973
O......Page 974
R......Page 975
S......Page 976
W......Page 977
Z......Page 978