The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. Key Features: - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual
Author(s): Mohamed Henini
Edition: illustrated edition
Publisher: Elsevier Science
Year: 2008
Language: English
Pages: 843
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Справочники, каталоги, таблицы
cover.jpg......Page 1
Preface......Page 2
1.1 Introduction......Page 3
1.2 Mechanisms for interlayer correlation formation......Page 4
1.3 Strain-field interactions in multilayer structures......Page 6
1.4 Comparison with experimental results......Page 23
1.5 Monte Carlo growth simulations......Page 29
1.6 InGaAs/GaAs multilayers......Page 32
1.7 Ordering in SiGe/Si dot superlattices......Page 36
1.8 PbSe/PbEuTe dot superlattices......Page 38
1.9 Other mechanisms for interlayer correlation formation......Page 50
References......Page 53
2.2 Quantum dot formation......Page 64
2.3 Control of quantum dot size and density......Page 69
2.4 Changing the confining matrix......Page 71
2.5 Overgrowth of quantum dots......Page 72
2.6 Applications......Page 77
References......Page 82
3.2 Growth of In(Ga)As/GaAs QDs......Page 86
3.3 Stacked QD layers......Page 90
3.4 Energy states in QDs......Page 92
3.5 Single QD spectroscopy......Page 101
3.6 Quantum dot lasers......Page 104
3.7 Vertical and resonant cavity structures......Page 111
3.8 Semiconductor optical amplifiers......Page 112
3.9 Single photon sources......Page 114
3.10 Entangled photon sources......Page 116
3.11 Spin-LEDs and the potential for QDs in spintronic devices......Page 118
Acknowledgements......Page 123
References......Page 124
4.1 Introduction......Page 134
4.2 Basics of cavity quantum electrodynamics......Page 135
4.3 Implementation of cavity quantum electrodynamics in the solid state......Page 140
4.4 The weak coupling regime......Page 144
4.5 The strong coupling regime......Page 147
4.6 Towards a deterministic cavitydot coupling......Page 151
4.7 Applications of solid-state cavity quantum electrodynamics......Page 152
4.8 Summary and conclusions......Page 159
References......Page 160
5.1 Introduction......Page 167
5.2 Formation of the wetting layer......Page 173
5.3 Dependence of the QD structural properties on the substrate material (GaAs vs AlAs)......Page 178
5.4 Capping process of InAs quantum dots......Page 181
5.5 Conclusions......Page 198
References......Page 199
6.1 Introduction......Page 203
6.2 Epitaxial growth of nitrides......Page 204
6.3 Structural properties of GaN QDs......Page 212
6.4 Vertical correlation of stacked QDs......Page 216
6.5 X-ray diffraction analysis of GaN QDs......Page 217
6.6 Optical properties of single GaN QDs......Page 219
6.7 Rare earth doping of GaN QDs......Page 228
References......Page 229
7.1 Introduction......Page 232
7.2 Growth and structural characterization......Page 233
7.3 Raman scattering......Page 242
7.4 Luminescence......Page 250
7.5 Intraband absorption......Page 266
References......Page 268
8.2 Surface and interface structures of GaSb/GaAs......Page 273
8.3 GaSb quantum dots on GaAs......Page 282
References......Page 292
9.1 Introduction......Page 295
9.2 Growth of nanowires PLD......Page 296
9.3 Optical properties I: whispering gallery modes......Page 304
9.4 Optical properties II: stimulated emission from ZnO microcrystals......Page 313
9.5 Electrical characterization of ZnO microcrystals......Page 315
References......Page 321
10.1 Introduction......Page 326
10.2 Experimental techniques......Page 327
10.3 Experimental data and interpretation......Page 328
10.4 Miniband model for the Ge/Si QDSL......Page 338
10.5 Conclusions......Page 344
References......Page 345
11.1 Introduction......Page 348
11.2 Non-adiabaticity of the excitonphonon systems in spherical quantum dots......Page 349
11.3 Photoluminescence of spherical quantum dots......Page 350
11.4 Non-adiabaticity of the excitonphonon systems in stacked quantum dots......Page 358
11.5 Excitonic polarons in quantum dots: modification of the optical spectra......Page 363
11.6 Recent studies......Page 366
References......Page 369
12.1 Introduction......Page 373
12.2 What is a quantum dot?......Page 374
12.3 Slow oscillation and random switching instability in a distribution of QDs......Page 375
12.4 Many-body effects in coupled quantum dots......Page 385
12.5 Conventional optical study of QDs......Page 387
12.7 Instability in the PL of quantum dots......Page 389
References......Page 392
13.1 Introduction......Page 394
13.2 Radiation hardness of quantum dot heterostructures......Page 401
13.3 Radiation hardness of qd lasers......Page 415
13.4 Radiation technology......Page 417
References......Page 436
14.1 Introduction......Page 450
14.2 II–VI diluted magnetic semiconductors quantum dots......Page 451
14.3 Optical probing of the spin state of a single magnetic atom in a QD......Page 455
14.4 Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom......Page 462
14.5 Carrier-controlled spin properties of a single magnetic atom......Page 467
Reference......Page 475
15.1 Introduction......Page 478
15.2 Optically induced charge storage......Page 483
15.3 Optical spin orientation......Page 495
References......Page 503
16.1 Introduction......Page 507
16.2 QD nanostructures for long wavelength emission......Page 508
16.3 Quantum dot strain engineering......Page 509
16.4 QD nanostructures for 0.981.04m emission......Page 522
16.5 Conclusions......Page 526
References......Page 527
17.1 Introduction......Page 531
17.2 Selective-area-growth of InAs quantum dots using the metal-mask/MBE method......Page 532
17.3 Site control of InAs QDs using the nano-jet probe (NJP)......Page 541
References......Page 552
18.1 Introduction......Page 554
18.2 Quantum dot solar cells......Page 555
18.3 Quantum dot growth......Page 558
18.4 Organic quantum dot solar cells......Page 560
18.5 Quantum dot solar cell behaviour......Page 561
References......Page 565
19.1 Introduction......Page 567
19.2 Qd growth for SLEDs......Page 571
19.3 Wide-spectrum InAs/GaAs QD SLEDs......Page 576
19.4 Modelling QD SLEDs......Page 589
19.5 Conclusion and perspectives......Page 597
References......Page 599
20.2 InAs/GaAs quantum dot mode-locked lasers......Page 602
20.3 InAs/InP quantum dash mode-locked lasers emitting at 1.55m......Page 612
20.4 Applications......Page 615
References......Page 618
21.1 Introduction......Page 622
21.2 Theoretical modelling of quantum dot infrared detectors......Page 624
21.3 InP-based QDIP materials growth and characterizations......Page 633
21.4 InP-based QDIP device results......Page 637
21.5 InP-based QDIP focal plane arrays......Page 656
21.6 Summary......Page 658
References......Page 659
22.1 Introduction......Page 661
22.2 Multi-band quantum dots-in-a-well (DWELL) infrared photodetectors......Page 662
22.3 Tunnelling quantum dot infrared photodetectors (T-QDIPs)......Page 670
22.4 Improvement of QDIP performance......Page 679
22.5 Present performance capabilities of QDIPs......Page 681
22.6 Quantum dot focal plane arrays (FPAs)......Page 682
References......Page 685
23.1 Introduction and fundamentals of quantum information processing......Page 689
23.2 Semiconductor self-assembled quantum dots as hardware......Page 691
23.3 Exciton representation......Page 693
23.4 Spin representation......Page 699
23.5 General quantum computer architecture and related quantum devices......Page 703
23.6 Conclusions......Page 707
References......Page 708
24.1 Introduction......Page 710
24.2 Theoretical background on single-photon sources......Page 711
24.3 Optical properties of a nanocrystal......Page 717
24.4 Nanocrystals as single-photon sources......Page 723
24.5 Beyond the isolated emitter QD/environment interactions......Page 726
24.6 Time coherence of the single photons emitted by an individual nanocrystal......Page 734
24.7 Multiexcitonic emission of colloidal quantum dots......Page 738
24.8 Controlling quantum dot emission with photonic structures......Page 740
References......Page 744
25.1 Introduction......Page 751
25.2 Synthesis, chemical stability, and structural characterization of PbSe NQDs, PbSe/PbS coreshell NQDs and PbSe/PbSxeS12x core-alloyedshell NQDs......Page 752
25.3 Structural characterization of PbSe core, PbSe/PbS coreshell and PbSe/PbSxeS12x core-alloyedShell NQDs......Page 755
25.4 Optical properties of PbSe NQDs, PbSe/PbS coreshell NQDs and PbSe/PbSxeS12x core-alloyedshell NQDs......Page 757
25.5 Passive Q-switching, using PbSe NQDs, PbSe/PbS coreshell NQDs and PbSe/PbSexS12x core-alloyedshell NQDs......Page 763
25.6 PbSe NQDs used in a gain device and integrated into microcavities......Page 767
25.7 Coupling of PbSe NQDs with -Fe2O3 magnetic nanoparticles, for a future biological application......Page 769
25.8 Electrical properties of PbSe NQDs ordered solids......Page 770
25.9 Summary......Page 772
References......Page 773
26.1 Introduction......Page 775
26.2 Creating a fluorescent biolabel out of semiconductor nanocrystals......Page 778
26.3 Applications......Page 790
References......Page 797
27.2 Quantum dots acquire a colourful personality with their environmental magic......Page 801
27.4 Quantum dot toxicty: a forgotton glass slipper......Page 805
References......Page 808
28.1 Introduction......Page 812
28.2 Advances in QD synthesis, QD array synthesis and properties of the resulting structures......Page 814
28.3 Quantum dot arrays and related studies underlying photoluminescence and potential light-emitting diode applications......Page 817
28.5 Quantum dot arrays as potential solar cells......Page 818
References......Page 820
B......Page 823
C......Page 824
D......Page 825
E......Page 826
F......Page 827
G......Page 828
H......Page 829
I......Page 830
K......Page 831
M......Page 832
N......Page 833
P......Page 834
Q......Page 835
R......Page 838
S......Page 839
T......Page 841
W......Page 842
Z......Page 843