Author(s): Valery V. Tuchin
Publisher: CRC Press
Year: 2010
Language: English
Pages: 845
Tags: Биологические дисциплины;Матметоды и моделирование в биологии;
Cover Page......Page 1
Series in Medical Physics and Biomedical Engineering......Page 3
Title Page......Page 4
ISBN 9781439806289......Page 5
Contents......Page 7
Preface......Page 20
The Editor......Page 25
List of Contributors......Page 26
1. FDTD Simulation of Light Interaction with Cells for Diagnostics and Imaging in Nanobiophotonics......Page 36
1.1 Introduction......Page 37
1.2.1 The basic FDTD numerical scheme......Page 38
1.2.2 Numerical excitation of the input wave......Page 39
1.2.3 Uni-axial perfectly matched layer absorbing boundary conditions......Page 42
1.2.4 FDTD formulation of the light scattering properties from single cells......Page 45
1.2.5 FDTD formulation of optical phase contrast microscopic (OPCM) imaging......Page 50
1.3.1 Validation of the simulationresults......Page 54
1.3.2 Effect of extracellular medium absorption on the light scattering patterns......Page 57
1.4.2 Optical clearing effect......Page 59
1.4.3 The cell imaging effect of gold nanoparticles......Page 60
1.5 Conclusion......Page 64
2.1 Introduction......Page 72
2.2.2 Metal nanorods......Page 73
2.2.4 Other particles and nanoparticles assemblies......Page 74
2.3.1 Basicphysical principles......Page 75
2.3.2 Plasmon resonances......Page 78
2.3.3 Metal spheres......Page 80
2.3.4 Metal nanorods......Page 81
2.3.5 Coupled plasmons......Page 88
2.4.1 Functionalization of metal nanoparticles......Page 93
2.4.2 Homogenous and biobarcode assays......Page 95
2.4.3 Solid-phase assays with nanoparticle markers......Page 96
2.4.4 Functionalized NPs in biomedical sensing and imaging......Page 98
2.4.5 Interaction of NPs with living cells and organisms: Cell-uptake, biodistribution, and toxicity aspects......Page 100
2.4.6 Application of NPs to drug delivery and photothermal therapy......Page 102
2.5 Conclusion......Page 104
3.1 Introduction: Why Cell Transfection?......Page 122
3.2.2 Polyplex transfection......Page 124
3.2.5 Electroporation......Page 125
3.3 ReviewofOptical Injection andTransfection......Page 126
3.4 Physics of Species Transport through a Photopore......Page 132
3.5 Physics of theLaser-Cell Interaction......Page 146
3.6 Conclusion......Page 148
4.1 Introduction......Page 154
4.2.1 Videomicroscopy and tomography......Page 155
4.2.2 Spectral imaging......Page 156
4.2.4 Fluorescence lifetime imaging microscopy (FLIM)......Page 157
4.3.1 Autofluorescence imaging......Page 158
4.3.2 Membrane dynamics......Page 160
4.3.3 FRET-based applications......Page 163
4.4 FinalRemarks......Page 167
5.1 Introduction......Page 172
5.1.1 Fluorescent molecular probes......Page 173
5.2.2 Fluorescence molecular tomography......Page 174
5.3.1 Optical projection tomography......Page 179
5.3.2 Reconstruction methods in OPT......Page 182
6.1 Introduction......Page 194
6.2.1 Overview......Page 197
6.2.2 Single-point and laser-scanning measurements of fluorescence lifetime......Page 199
6.2.3 Wide-field FLIM......Page 202
6.3.1 Introduction......Page 205
6.3.2 Application to cancer......Page 206
6.3.3 Application toatherosclerosis......Page 207
6.4.1 Fluorescence lifetime sensing......Page 210
6.4.2 FLIMapplied to FRET......Page 211
6.5.1 Overview......Page 213
6.5.2 Excitation-resolved FLIM......Page 214
6.5.3 Emission-resolved FLIM......Page 215
6.6 Outlook......Page 217
7.1 Introduction......Page 232
7.2.1 Raman spectroscopy......Page 234
7.2.2 Ramanmicroscopy......Page 235
7.2.5 Coherent anti-Stokes Raman scattering (CARS) microscopy......Page 236
7.2.6 Raman imaging......Page 237
7.3.1 Preparation of tissues......Page 238
7.3.3 Raman spectra of biological molecules......Page 239
7.4.1 Ramanmicroscopy ofmicrobial cells......Page 240
7.4.2 Raman spectroscopy of eukaryotic cells......Page 241
7.4.4 SERS/TERS of cells......Page 243
7.4.5 CARS microscopic imaging of cells......Page 245
7.5.1 Raman imaging of hard tissues......Page 246
7.5.2 Raman imaging of soft tissues......Page 247
7.5.3 SERS detection of tissue-specific antigens......Page 249
7.5.4 CARSformedical tissue imaging......Page 250
7.6 Conclusions......Page 251
8. Resonance Raman Spectroscopy of Human Skin for the In Vivo Detection of Carotenoid Antioxidant Substances......Page 264
8.1 Introduction......Page 265
8.3.1 Different types of antioxidants measured in the human skin......Page 266
8.4.3 Solubility......Page 267
8.5.2 Reflection spectroscopy......Page 268
8.5.3 Raman spectroscopy......Page 269
8.6.1 Setup for in vivo resonance Raman spectroscopy of cutaneous carotenoids......Page 270
8.6.2 Optimization of the setupparameters......Page 271
8.6.3 Typical RRS spectra of carotenoids obtained from the skin......Page 272
8.6.5 Selective detection of cutaneous beta-carotene and lycopene......Page 273
8.6.6 Measurements of cutaneous lycopene......Page 274
8.7.1 Distribution of carotenoids in the human skin......Page 275
8.7.2 Stress factors, which decrease the carotenoid level in the skin......Page 276
8.7.3 Potential methods to increase the carotenoid level in the skin......Page 277
8.7.5 Antioxidants and premature aging......Page 278
8.7.7 Medication with antioxidants......Page 280
8.9 Conclusions......Page 282
9. Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Using Mueller Matrix Decomposition......Page 288
9.1 Introduction......Page 289
9.2 MuellerMatrixPreliminaries and theBasicPolarizationParameters......Page 290
9.3 Polar Decomposition of Mueller Matrices for Extraction of the Individual Intrinsic Polarization Parameters......Page 293
9.4 Sensitive Experimental System for Mueller Matrix Measurements in Turbid Media......Page 296
9.5 Forward Modeling of Simultaneous Occurrence of Several Polarization Effects in Turbid Media Using the Monte Carlo Approach......Page 299
9.6 Validation of the Mueller Matrix Decomposition Method in Complex Tissue-LikeTurbid Media......Page 302
9.7 Selected Trends: Path length and Detection Geometry Effects on the Decomposition-Derived Polarization Parameters......Page 305
9.8.1 Noninvasive glucose measurement in tissue-like turbid media......Page 309
9.8.2 Monitoring regenerative treatments of the heart......Page 310
9.8.3 Proof-of-principle in vivo biomedical deployment of the method......Page 312
9.9 Concluding Remarks on the Prospect of the Mueller Matrix Decomposition Method in Polarimetric Assessment of Biological Tissues......Page 314
10. Statistical, Correlation, and Topological Approaches in Diagnostics of the Structure and Physiological State of Birefringent Biological Tissues......Page 318
10.1.1 Polarimetric approach......Page 319
10.1.2 Correlation approach......Page 320
10.1.3 Topological or singular optical approach......Page 321
10.2.1 Crystal optical model of anisotropic component of the main types of biological tissues......Page 323
10.2.2 Techniques for analysis of the structure of inhomogeneously polarized object fields......Page 325
10.3.1 Polarization mapping of biological tissues: Apparatus and techniques......Page 326
10.3.2 Statistical and fractal analysis of polarization images of histological slices of biological tissues......Page 327
10.3.3 Diagnostic feasibilities of polarization mapping of histological slices of biological tissues of various physiological states......Page 329
10.3.4 Polarization 2Dtomography of biological tissues......Page 333
10.4.1 The degree of mutual polarization at laser images of biological tissues......Page 338
10.4.3 Statistical approach to the analysis of polarization-correlation maps of biological tissues......Page 339
10.5.1 Main mechanisms and scenarios of forming singular nets at laser fields of birefringent structures of biological tissues......Page 343
10.5.2 Statistical and fractal approaches to analysis of singular nets at laser fields of birefringent structures of biological tissues......Page 344
10.5.4 Structure of S-contours of polarization images of the architectonic nets of birefringent collagen fibrils......Page 348
10.5.5 On the interconnection of the singular and statistical parameters of inhomogeneously polarized nets of biological crystals......Page 350
10.6 Conclusion......Page 352
11.1 SkinMicrovasculature......Page 358
11.2 Nailfold Capillaroscopy......Page 359
11.3 Laser Doppler Perfusion Imaging......Page 360
11.4 Laser Speckle Perfusion Imaging......Page 364
11.5 Polarization Spectroscopy......Page 366
11.6 Comparison ofLDPI,LSPI, andTiVi......Page 368
11.7 Optical Microangiography......Page 371
11.8 Photoacoustic Tomography......Page 372
11.9 Conclusions......Page 374
12. Advances in Optoacoustic Imaging......Page 378
12.1 Introduction......Page 379
12.2 Image Reconstruction in OA Tomography......Page 380
12.2.1 Solution of the inverse problem of OA tomography in spatial-frequency domain......Page 381
12.2.2 Solution of the inverse problem of OA tomography in time domain......Page 382
12.2.3 Possible image artifacts......Page 383
12.3 3DOATomography......Page 384
12.4.1 Transducer arrays for 2D OA tomography......Page 386
12.4.2 Image reconstruction in 2D OA tomography......Page 390
12.5 Conclusions......Page 392
13.1 Introduction......Page 396
13.2 Dark-Field PAM and Its Limitation in Spatial Resolution......Page 397
13.3 Resolution Improvement in PAM by Using Diffraction-Limited Optical Focusing......Page 398
13.4.1 System design......Page 399
13.4.2 Spatial resolution quantification......Page 400
13.4.4 Sensitivity estimation......Page 402
13.5.1 Structural imaging......Page 403
13.5.2 Microvascular bifurcation......Page 405
13.5.3 Functional imaging of hemoglobin oxygen saturation......Page 406
13.6 Conclusion and Perspectives......Page 408
14.1 Introduction......Page 412
14.2 Low Coherence Interferometry......Page 414
14.2.1 Axial resolution......Page 416
14.2.2 Transverse resolution......Page 417
14.3.1 Time-domain scanning......Page 418
14.3.2 Fourier-domain OCT......Page 419
14.5 Clinical Applications of OCT......Page 420
14.5.3 Oncology......Page 421
14.5.4 Other applications......Page 422
14.5.5 OCT in biology......Page 423
14.6 OCT Image Interpretation......Page 424
14.7.1 Mie theory in SOCT......Page 425
14.7.2 Spectral analysis of OCT signals......Page 426
14.7.3 Spectral analysis based on Burg's method......Page 427
14.7.4 Experimental demonstration of SOCT for scatterer size estimation......Page 430
14.8 Conclusions......Page 431
15.1 Introduction......Page 436
15.2 Brief Principle of Doppler Optical Coherence Tomography......Page 438
15.3 Optical Micro-Angiography......Page 439
15.3.1 In vivo full-range complex Fourier-domain OCT......Page 440
15.3.2 OMAGflowimaging......Page 442
15.3.3 Directional OMAG flow imaging......Page 444
15.4 OMAG System Setup......Page 446
15.5 OMAG Imaging Applications......Page 447
15.5.2 Imaging cerebral blood perfusion in small animal models......Page 448
15.6 Conclusions......Page 450
16.1 Introduction (History, Motivation, Objectives)......Page 458
16.2.1 Design of the fiber-based cross-polarization OCT device......Page 460
16.2.2 OCT probes: Customizing the device......Page 463
16.3.1 Diagnosis of cancer and target biopsy optimization......Page 465
16.3.3 OCT monitoring of treatment......Page 466
16.3.4 OCT forguided surgery......Page 467
16.3.5 Cross-polarization OCT modality for neoplasia OCTdiagnosis......Page 469
16.3.6 OCT miniprobe application......Page 470
16.4 Conclusion......Page 474
17. Noninvasive Assessment of Molecular Permeability with OCT......Page 480
17.1 Introduction......Page 481
17.2 Principles of OCT Functional Imaging......Page 482
17.3.2 Ocular tissues......Page 485
17.3.4 Data processing......Page 486
17.4.1 Diffusioninthe cornea......Page 487
17.4.2 Diffusioninthe sclera......Page 489
17.4.3 In-depth diffusion monitoring......Page 491
17.4.4 Diffusioninthe carotid......Page 492
17.5 Conclusions......Page 494
18.1 Introduction......Page 500
18.2 Light Scattering Spectroscopy......Page 502
18.3 Confocal Microscopy......Page 503
18.4 CLASS Microscopy......Page 504
18.5 Imaging of Live Cells with CLASS Microscopy......Page 508
18.6 Characterization of Single Gold Nanorods with CLASS Microscopy......Page 509
18.7 Conclusion......Page 512
19.1 Introduction......Page 516
19.1.2 Role for dual axes confocal microscopy......Page 517
19.2 Limitations of Single Axis Confocal Microscopy......Page 518
19.2.2 Single axis confocal systems......Page 519
19.3 Dual Axes Confocal Architecture......Page 520
19.3.1 Dual axes design......Page 521
19.3.2 Dual axes point spreadfunction......Page 522
19.3.3 Postobjective scanning......Page 524
19.3.4 Improved rejection of scattering......Page 525
19.4.2 Horizontal cross-sectional images......Page 529
19.4.3 Vertical cross-sectional images......Page 530
19.4.4 Dual axes confocal fluorescence imaging......Page 531
19.5.1 Scanner structure and function......Page 533
19.5.2 Scanner characterization......Page 534
19.5.3 Scanner fabrication process......Page 535
19.6.2 Assembly and alignment......Page 536
19.6.3 Instrument control and image acquisition......Page 537
19.6.5 Endoscope compatible prototype......Page 538
19.7 Conclusions and Future Directions......Page 540
20.1 Introduction......Page 544
20.2.1 Two-photon excitation fluorescence microscopy......Page 545
20.2.2 Second-harmonic generation microscopy......Page 547
20.2.3 Fluorescence lifetime imaging microscopy......Page 548
20.3.2 Combined two-photon fluorescence-second-harmonic generation microscopy on diseased dermis tissue......Page 551
20.3.3 Combined two-photon fluorescence-second-harmonic generation microscopyon bladder tissue......Page 553
20.3.5 Improving the penetration depth with two-photon imaging: Application of optical clearing agents......Page 555
20.4.1 Lifetime imaging of basal cell carcinoma......Page 558
20.4.2 Enhancing tumor margins with two-photon fluorescence by using aminolevulinic acid......Page 560
20.5.1 Single spine imaging and ablation inside brain of small living animals......Page 561
20.5.2 Optical recording of electrical activity in intact neuronal network by random access second-harmonic (RASH) microscopy......Page 566
20.6 Conclusion......Page 570
21. Endomicroscopy Technologies for High-Resolution Nonlinear Optical Imaging and Optical Coherence Tomography......Page 582
21.1 Introduction......Page 583
21.2.1 Mechanical scanning in side-viewing endomicroscopes......Page 584
21.2.2 Scanning mechanisms in forward-viewing endomicroscopes......Page 585
21.2.3 Compact objective lens and focusing mechanism......Page 590
21.3.1 Special considerations in nonlinear optical endomicroscopy......Page 591
21.3.2 Nonlinear optical endomicroscopy embodiments and applications......Page 592
21.4.2 Endomicroscopic OCT embodiments and the applications......Page 596
21.5 Summary......Page 600
22.1 Introduction......Page 610
22.2 Imaging Vascular Development Using Confocal Microscopy of Vital Fluorescent Markers......Page 611
22.3.1 Structural 3-Dimaging of live embryos with SS-OCT......Page 615
22.3.2 Doppler SS-OCT imaging of blood flow......Page 618
22.4 Conclusion......Page 621
23. Terahertz Tissue Spectroscopy and Imaging......Page 626
23.1 Introduction: The Specific Properties of the THz Frequency Range for Monitoring of Tissue Properties......Page 627
23.2.2 FTIR......Page 628
23.2.3 THz-TDS,ATR......Page 629
23.3 Biological Molecular Fingerprints......Page 634
23.3.3 Polypeptides......Page 635
23.3.4 Proteins......Page 636
23.3.6 DNA......Page 637
23.4 Properties of Biological Tissues in the THz Frequency Range......Page 638
23.5 Water Content in Tissues and Its Interaction with Terahertz Radiation......Page 639
23.5.2 THz spectra of water solution......Page 640
23.5.4 Muscles......Page 643
23.5.7 Blood, hemoglobin, myoglobin......Page 644
23.5.9 Tissuedehydration......Page 645
23.6.5 Nanoparticle-enabled terahertz imaging......Page 647
23.7 Summary......Page 648
24. Nanoparticles as Sunscreen Compound: Risks and Benefits......Page 654
24.2 Nanoparticles in Sunscreens......Page 655
24.3.1 Skin structure......Page 656
24.3.2 Stratum corneum......Page 657
24.3.3 Permeability of stratum corneum......Page 658
24.4 UV-Light-Blocking Efficacy of Nanoparticles......Page 659
24.4.2 Effect of UV radiation on skin......Page 661
24.4.4 Mie calculations of cross-sections and anisotropy scattering factor of nanoparticles......Page 662
24.4.5 Model of stratum corneum with particles......Page 664
24.4.6 Results of simulations......Page 666
24.5.2 EPR technique......Page 670
24.5.5 Mie calculations......Page 671
24.5.7 Experiments II: Emulsion on porcine skin......Page 673
24.6 Conclusion......Page 675
25. Photodynamic Therapy/Diagnostics: Principles, Practice, and Advances......Page 684
25.1 Historical Introduction......Page 685
25.2 Photophysics of PDT/PDD......Page 687
25.3 Photochemistry of PDT/PDD......Page 691
25.4 Photobiology of PDT......Page 693
25.5.1 Light sources......Page 696
25.5.2 Light delivery and distribution......Page 698
25.5.3 Dosemonitoring......Page 700
25.5.4 PDT response modeling......Page 704
25.5.5 PDT biological response monitoring......Page 705
25.6 PDD Technologies......Page 707
25.7 Novel Directions in PDT......Page 710
25.7.1 Photophysics-based developments......Page 711
25.7.3 Photobiology-based......Page 713
25.7.4 Applications-based......Page 714
25.8 Conclusions......Page 715
26. Advances in Low-Intensity Laser and Phototherapy......Page 722
26.2 Cellular Chromophores......Page 723
26.2.3 Tissue photobiology......Page 724
26.2.5 Photoactive porphyrins......Page 725
26.2.7 Laser speckle effects in mitochondria......Page 726
26.3.1 Redox sensitive pathway......Page 727
26.3.3 Nitricoxide signaling......Page 728
26.3.4 G-protein pathway......Page 729
26.4 GeneTranscription after LLLT......Page 730
26.4.3 HIF-1......Page 731
26.5 Cellular Effects......Page 732
26.5.3 Migration......Page 734
26.6.2 Connective tissue......Page 735
26.7.1 LLLTininflammatory disorders......Page 736
26.7.2 LLLTinhealing......Page 738
26.7.3 LLLTinpain relief......Page 739
26.7.4 LLLTinaesthetic applications......Page 740
26.8 Conclusion......Page 741
27. Low-Level Laser Therapy in Stroke and Central Nervous System......Page 752
27.2 Photobiology of Low-Level Laser Therapy......Page 753
27.3.1 LLLT on neuronal cells......Page 754
27.4 Human Skull Transmission Measurements......Page 755
27.5.1 Epidemic of stroke......Page 756
27.5.2 Mechanisms of brain injury after stroke......Page 758
27.5.4 Investigational neuroprotectants and pharmacological intervention......Page 759
27.6.2 TLTinclinical trials for stroke......Page 761
27.6.1 TLT in animal models for stroke......Page 760
27.7 LLLT for CNS Damage......Page 762
27.7.3 Reversal of neurotoxicity......Page 764
27.8.3 Alzheimer's disease......Page 765
27.10 Conclusions and Future Outlook......Page 766
28. Advances in Cancer Photothermal Therapy......Page 774
28.1 Introduction......Page 775
28.2.3 Immune responses induced by photothermal therapy......Page 776
28.3.2 Selective photothermal interaction using light absorbers......Page 777
28.3.4 In vivo selective laser-photothermal tissue interaction......Page 778
28.3.5 Laser-ICG photothermal effect on survival of tumor-bearing rats......Page 779
28.4.4 Antibody-conjugated nanomaterials for enhancement of photothermal destruction of tumors......Page 781
28.5.2 Effects of photothermal immunotherapy in preclinical studies......Page 783
28.5.3 Possible immunological mechanism of photothermal immunotherapy......Page 785
28.5.4 Photothermal immunotherapy in clinical studies......Page 786
28.6 Conclusion......Page 787
29. Cancer Laser Thermotherapy Mediated by Plasmonic Nanoparticles......Page 798
29.1 Introduction......Page 799
29.2 Characteristics of Gold Nanoparticles......Page 801
29.3 Calculation of the Temperature Fields and Model Experiments......Page 802
29.5 Local Laser Hyperthermia and Thermolysis of Normal Tissues, Transplanted and Spontaneous Tumors......Page 816
29.6 Conclusions......Page 825
30. "All Laser" Corneal Surgery by Combination of Femtosecond Laser Ablation and Laser Tissue Welding......Page 834
30.2 Femtosecond Laser Preparation of Ocular Flaps......Page 835
30.3 Low-Power Diode Laser Welding of Ocular Tissues......Page 837
30.4.1 Penetrating keratoplasty......Page 839
30.4.2 Anterior lamellar keratoplasty......Page 840
30.4.3 Endothelial transplantation (deep lamellar keratoplasty)......Page 841
30.5 Conclusions......Page 842