Intensive research on fullerenes, nanoparticles, and quantum dots in the 1990s led to interest in nanotubes and nanowires in subsequent years. Handbook of Nanophysics: Nanotubes and Nanowires focuses on the fundamental physics and latest applications of these important nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume first covers key aspects of carbon nanotubes, including quantum and electron transport, isotope engineering, and fluid flow, before exploring inorganic nanotubes, such as spinel oxide nanotubes, magnetic nanotubes, and self-assembled peptide nanostructures. It then focuses on germanium, gallium nitride, gold, polymer, and organic nanowires and their properties. The book also discusses nanowire arrays, nanorods, atomic wires, monatomic chains, ultrathin gold nanowires, and several nanorings, including superconducting, ferromagnetic, and quantum dot nanorings. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.
Author(s): Klaus D. Sattler
Edition: 1
Publisher: CRC Press
Year: 2010
Language: English
Commentary: index is missing
Pages: 731
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Физика наноразмерных систем;Справочники, каталоги, таблицы
Contents......Page 6
Preface......Page 9
Acknowledgments......Page 11
Editor......Page 12
Contributors......Page 13
Part I: Carbon Nanotubes......Page 17
1.1 Introduction......Page 18
Synthesis of Double-Walled Carbon Nanotubes......Page 19
Electronic Properties of Double-Walled Carbon Nanotubes......Page 20
Structure Determination of Double-Walled Carbon Nanotubes......Page 22
Raman Spectra of Double-Walled Carbon Nanotubes......Page 23
Fullerene-Filled Double-Walled Carbon Nanotubes......Page 26
Inorganic-Material-Filled Double-Walled Carbon Nanotubes......Page 28
Organic-Material-Filled Double-Walled Carbon Nanotubes......Page 29
Chemical Reactions inside Double-Walled Carbon Nanotubes......Page 31
Doping of Double-Walled Carbon Nanotubes......Page 33
References......Page 34
2.1 Introduction......Page 40
Band Structure of Graphene......Page 41
Band Structure of Carbon Nanotubes......Page 43
Background......Page 44
Transport Calculations......Page 45
Conductance of Carbon Nanotubes......Page 47
Carbon Nanotube Transistors......Page 48
Functionalized Carbon Nanotube Devices......Page 49
References......Page 50
3.1 Introduction......Page 54
Overview of Carbon Nanotube Transport......Page 55
Electron Transport......Page 57
Fermi-Liquid vs. Non-Fermi-Liquid Theories......Page 58
Synthesis and Device Fabrication......Page 59
Differential Conductance......Page 61
Low-Frequency Shot Noise......Page 63
References......Page 64
Effects of Size Confinement on Heat Conduction......Page 67
Electronic Thermal Conductance of Carbon Nanotubes in the Ballistic Regime......Page 69
Thermal Measurement of Carbon Nanotube Bundles......Page 71
Direct Thermal Conductance Measurement of Individual Carbon Nanotube......Page 72
Self-Heating Measurement of Thermal Transport in Carbon Nanotube......Page 75
Optical Measurement of Thermal Transport in Carbon Nanotubes......Page 76
References......Page 78
5.1 Introduction......Page 81
5.2 Electronic Properties of SWNTs......Page 82
5.3 Thermal Radiation from SWNTs......Page 83
Free-Space Green Tensor......Page 84
Green Tensor in the Vicinity of SWNT......Page 85
Thermal Radiation Calculation......Page 86
Numerical Results......Page 87
5.4 Quasi-Metallic Carbon Nanotubes as Terahertz Emitters......Page 89
5.6 Armchair Nanotubes in a Magnetic Field as Tunable THz Detectors and Emitters......Page 91
5.7 Conclusion......Page 93
References......Page 94
6.1 Introduction......Page 97
Geometry and Electronic Properties of SWCNTs......Page 98
Raman Spectroscopy of SWCNTs......Page 100
Modified SWCNTs......Page 101
SWCNT-Specific Isotope Engineering......Page 102
Growth Mechanism of Inner Tubes......Page 104
NMR Studies on Isotope Engineered Heteronuclear Nanotubes......Page 105
6.4 Summary......Page 108
References......Page 109
Nanoscience, Nanotechnology, and sp2 Carbon......Page 112
Importance of Graphite, Carbon Nanotubes, and Graphene......Page 113
Basic Concepts of Raman Spectroscopy......Page 115
The sp2 Model System: Graphene......Page 117
Adding Graphene Layers: From a Single-Layer Graphene to Graphite......Page 119
Rolling Up One Graphene Layer: The Single-Wall Carbon Nanotube......Page 120
Adding Tube Layers: Double- and Multi-Wall Carbon Nanotubes......Page 123
Disorder in sp2 Systems......Page 124
7.5 Summary......Page 126
References......Page 128
8.1 Introduction......Page 131
Structure and Properties of CNTs......Page 132
Thermodynamics of Nanotube Dispersions......Page 133
Theory of Colloid Stability......Page 134
Theory of Particle Aggregation......Page 135
How to Make a Dispersion of CNTs......Page 138
How to Make CNT Th in Films and Devices......Page 143
References......Page 149
9.2 Functionalization of CNTs......Page 155
9.3 Theoretical Modeling of CNTs......Page 156
9.4 Carboxylated CNTs......Page 158
9.5 Thiolated CNTs......Page 160
9.6 Assembly of Phenosafranin to CNTs......Page 163
References......Page 166
10.1 Introduction......Page 171
Branched Carbon Nanostructures—Initial Work......Page 172
10.2 Controlled Carbon Nanotube Y-Junction Synthesis......Page 174
10.5 Applications of Y-CNTs to Novel Electronic Functionality......Page 175
Switching and Transistor Applications......Page 176
Rectification Characteristics......Page 177
Electrical Switching Behavior......Page 179
Current Blocking Behavior......Page 180
10.7 Topics for Further Investigation......Page 183
References......Page 184
11.1 Introduction......Page 188
Carbon Nanotubes......Page 189
Carbon Nanopipes......Page 190
Releasing Carbon Nanopipes......Page 191
Hagen–Poiseuille Flow......Page 192
Theory Underlying Simulation......Page 194
Filling Experiments with Carbon Nanotubes......Page 195
Filling Carbon Nanopipes with Fluids......Page 196
Wetting......Page 197
11.4 Experimental Investigation of Nanoscale Fluid Flow......Page 199
Super Flow in Carbon Nanotubes......Page 200
Reassessing Super Flows......Page 202
11.5 Controlling Fluid Flow through Carbon Nanopipes......Page 204
11.7 Interfacing, Interconnections, and Nanofluidic Device Fabrication......Page 205
DNA Sensing......Page 207
Cellular Probes and Nanoneedles......Page 208
References......Page 209
Part II: Inorganic Nanotubes......Page 217
12.2 Models of Hollow Inorganic Nanostructures......Page 218
12.3 General Criteria Describing the Stability of Inorganic Nanotubes and Fullerenes......Page 221
Physical Techniques......Page 224
Wet Chemistry......Page 225
High-Temperature Reactions......Page 226
Mechanical and Tribological Properties......Page 228
Electronic Properties......Page 232
12.7 Conclusions......Page 234
References......Page 235
General Fabrication Methods for Nanowires and Nanotubes......Page 240
Basics of Spinels......Page 241
13.2 MgAl2O4......Page 243
ZnAl2O4......Page 244
ZnGa2O4......Page 246
ZnFe2O4......Page 247
Zn2TiO4......Page 248
Zn2SnO4......Page 249
13.4 Twinning of Spinel Nanowires......Page 250
13.6 LiMn2O4......Page 251
13.7 Summary and Conclusions......Page 252
References......Page 253
14.1 Introduction......Page 255
14.2 Synthesis and Characterization......Page 256
Fabrication Methods......Page 257
Characterization Techniques......Page 258
Analytical and Numerical Methods......Page 259
Magnetic Configurations and Phase Diagram......Page 261
Reversal Modes in Magnetic Nanotubes......Page 262
Magnetostatic Interactions among Nanotubes......Page 263
14.4 Applications......Page 264
14.5 Summary and Perspectives......Page 265
References......Page 266
15.2 Self-Assembly of Proteins and Peptides......Page 268
15.5 Charge-Complementary and Surfactant-Like Peptide Nanostructures......Page 269
15.6 Amphiphile Peptide Nanotubes......Page 270
15.7 Amyloid Fibrils as Natural Nanoscale Supramolecular Structures and Their Nanotechnological Applications......Page 272
15.8 Aromatic Nanostructures......Page 273
15.9 Additional Applications of Peptide Nanostructures......Page 275
References......Page 276
Part III: Types of Nanowires......Page 279
16.2 Conceptual Theoretical Model for Nanowires......Page 280
Density of States......Page 281
16.3 Growth of Ge Nanowires......Page 282
16.4 Properties of Ge Nanowires......Page 285
Electronic Properties and Applications......Page 286
Optical Properties and Applications......Page 288
Surface Chemistry and Applications......Page 289
Acknowledgments......Page 290
References......Page 291
17.1 Introduction......Page 294
Vapor Phase Growth......Page 295
Liquid Phase Growth......Page 300
Electrical Properties......Page 303
Mechanical Properties......Page 306
Optical Properties......Page 309
Field Emission Properties......Page 310
References......Page 314
18.1 Introduction......Page 318
Atomic and Electronic Structure of Unsaturated and Saturated Nanowires......Page 320
Dependence of the Band Gap and Formation Energy on Nanowire Diameter......Page 322
18.3 Atomic and Electronic Structure of Single and Multiple Vacancies in GaN Nanowires......Page 325
Nitrogen Vacancies......Page 326
Gallium Vacancies......Page 327
18.4 Comparison of Properties of GaN Nanowires and Nanodots......Page 330
18.5 Summary......Page 332
References......Page 333
19.1 Introduction......Page 335
19.2 Experiments......Page 336
Molecular Dynamics of Pure Nanowires......Page 339
First-Principles Simulations......Page 341
The Role of Light Impurities......Page 343
Novel NW Structures......Page 348
References......Page 351
20.1 Introduction......Page 354
20.2 Conjugated Polymers......Page 355
Charge Excitations: Solitons, Polarons, and Bipolarons......Page 356
Electrical Conductivity of Bulk Conducting Polymer......Page 357
Template-Based Synthesis......Page 359
Applications of Polymer Nanowires......Page 362
Electronic Transport Properties of Conducting Polymer Nanowires......Page 363
Appendix 20.A: Physics in One Dimension: Effect of Interactions and Disorder......Page 365
References......Page 367
21.2 Growth via Organic Molecular Beam Deposition......Page 370
21.3 Growth on Microstructured Templates......Page 373
21.4 Embedding and Integration......Page 375
Temperature-Dependent Spectroscopy......Page 376
On the Way to Nanofiber Light Sources......Page 377
Waveguides......Page 378
21.7 Conclusions......Page 379
References......Page 380
Part IV: Nanowire Arrays......Page 382
22.1 Introduction......Page 383
Electrodeposition......Page 384
Interference Lithography......Page 385
Deep Ultraviolet Lithography......Page 386
Demagnetizing Fields......Page 387
Shape Anisotropy......Page 388
Effects of Nanowires Thickness......Page 389
Coercivity Variations as a Function of Field Orientations......Page 391
Pseudo-Spin Valve Nanowires......Page 392
Alternating Width Nanowire Arrays......Page 396
References......Page 399
Connectivity Percolation......Page 405
Rigidity Percolation......Page 409
23.3 Nanorod Networks in Composite Materials......Page 410
23.4 Networks of Biological Nanorods......Page 412
References......Page 415
Part V: Nanowire Properties......Page 418
24.1 Introduction......Page 419
24.2 Growth Methods and Shape Controlling......Page 420
Stillinger–Weber Potential......Page 421
Simulation Methodology......Page 422
Simulation Results......Page 423
Discussion......Page 428
24.5 Summary......Page 429
References......Page 430
25.1 Introduction......Page 432
25.3 Wave Propagation in an Anisotropic Planar Waveguide......Page 433
25.4 Wave Propagation on Anisotropic Nanowire Waveguides......Page 434
TE Modes......Page 435
TM Modes......Page 436
Hybrid Modes......Page 437
Energy Flow of Hybrid Modes......Page 438
25.6 Realization and Numerical Simulations......Page 440
25.7 Light Coupling to Nanowire Waveguide......Page 442
Slow Light Waveguide......Page 443
Light Wheel and Open Cavity Formation......Page 444
References......Page 445
26.1 Introduction and Motivation......Page 448
26.2 Phonons and Nanowires......Page 450
26.3 Landauer Formula for the Th ermal Conductance......Page 451
26.4 Thermal Conductivity at Higher Temperatures......Page 453
References......Page 455
27.1 Introduction......Page 457
Spontaneous Polarization of the Electron Gas in 3D, 2D, and 1D......Page 459
Quantum Point Contacts......Page 460
Direct Measurements of
Wave Function Localization......Page 461
Carbon Nanotubes......Page 462
Idealized Models of Nanowires......Page 463
Electron Excitations and Dynamics......Page 464
27.5 The Jellium Model of Metal Wires and the Density Functional Picture......Page 465
27.6 Axially Symmetric Solutions......Page 466
27.7 Iterative Minimization of the LSD Density Functional......Page 467
Plane Wave Computations......Page 468
27.10 Discussion and Conclusive Remarks......Page 473
References......Page 474
28.2 Spin Dynamics......Page 477
Spin Dynamics of Itinerant Electrons......Page 478
D'yakonov–Perel Spin Relaxation......Page 482
Elliott–Yafet Spin Relaxation......Page 484
Magnetic Field Dependence of Spin Relaxation......Page 485
Spin Diffusion in Quantum Wires......Page 486
Weak Localization Corrections......Page 488
Optical Measurements......Page 489
Transport Measurements......Page 490
28.7 Summary......Page 491
References......Page 492
29.1 Introduction......Page 495
Fock–Landau Quantization......Page 496
Quantum Magnetic Oscillations......Page 497
Introduction......Page 501
dHvA Oscillations......Page 502
SdH Oscillations......Page 504
Statement of the Problem......Page 507
Weak Field Limit......Page 508
Beyond the Weak Field Limit......Page 510
29.5 Conclusion......Page 513
References......Page 514
30.1 Introduction......Page 517
Calculation of the vdW Coupling......Page 518
Noninteracting Electrons......Page 520
Low-Energy Description......Page 522
Spin-Density Wave......Page 524
Transport Properties of the SDW State......Page 525
30.4 Conclusions......Page 526
Appendix 30.A: Bosonization Basics......Page 527
References......Page 529
31.1 Introduction......Page 531
31.2 Isolated Cylindrical Nanowire......Page 533
31.3 Collective Spin-Wave Modes in an Array of Nanowires......Page 537
Isolated Hollow Cylindrical Nanowires......Page 539
Array of Hollow Cylindrical Nanowires......Page 541
References......Page 542
32.1 Introduction......Page 544
32.2 Nanowire Synthesis and Characterization......Page 545
32.3 Optical Backscattering Experiments......Page 546
32.4 Classical Calculations of the Elastic Light Scattering from a Cylinder......Page 548
32.5 Modeling the Backscattered Light from Semiconductor Nanowires......Page 549
32.6 Optical Phonons, Raman Scattering Matrices, and Manipulations......Page 550
32.7 Results and Discussion of Rayleigh Backscattering from Nanowires......Page 553
32.8 Polarized Raman Backscattering from Semiconductor Nanowires......Page 554
32.9 Summary and Conclusions......Page 556
References......Page 557
33.1 Introduction......Page 559
Transmission Function of a Cross-Junction......Page 561
Green’s Function......Page 562
Tight-Binding Models......Page 563
Numerical Calculation of Green’s Function......Page 566
Transverse Modes......Page 567
Projected Green’s Function......Page 568
Conductances of Square Wire Junctions......Page 570
Conductances of a Circular Wire Junction......Page 571
Energies and Probability Densities of Quasi-Bound States......Page 572
33.4 Summary and Future Perspective......Page 574
References......Page 575
Part VI: Atomic Wires and Point Contact......Page 576
34.1 Introduction......Page 577
A Simple Free-Electron Model of an Atomic Wire......Page 580
Landauer Theoryof Conductance......Page 581
Tight-Binding Models......Page 582
34.4 Elastic Scattering: Conductance Oscillations......Page 583
34.5 Mechanical Properties of Atomic Wires......Page 585
34.6 Inelastic Scattering and Dissipation......Page 587
34.7 Numerical Calculations of the Properties of Atomic Wires......Page 591
References......Page 594
Outline......Page 595
One-Dimensional Conductance......Page 596
TEM Imaging......Page 597
Low Temperature Break Junctions......Page 599
Stretching the Bond......Page 600
The Problem......Page 601
The Physics behind the Bond Strength......Page 602
Relativistic Effects of Atomic Chains......Page 603
Plane Wave Model for an Atomic Chain......Page 604
Conductance Oscillations for Other Materials......Page 605
References......Page 606
36.2 Basic Properties of Solid Gold......Page 609
36.3 Metal Nanowire and Quantized Conductance......Page 612
Two-Stage Formation Model......Page 614
Simulation of Formation Process......Page 615
Analysis of Electronic Structure......Page 616
Discussions......Page 618
36.5 Summary and Future Aspect......Page 620
Appendix 36.A: Note on Quantum-Mechanical Molecular Dynamics Simulation......Page 622
References......Page 623
37.1 Introduction......Page 627
37.2 The Landauer Approach to Conductance......Page 628
TEM and Dangling Wires......Page 629
Mechanically Controllable Break-Junctions......Page 630
Electro-Migration Technique......Page 631
Opening and Closing Traces......Page 632
Conductance Histograms......Page 633
Determination of Conduction Channels......Page 634
Atomic Contacts of Conventional Metals......Page 636
Atomic Contacts of Semimetals......Page 639
Atomic Contacts of Magnetic Metals......Page 640
37.5 Conclusions and Outlook......Page 642
References......Page 643
Electrostatic Confinement in Modulation-Doped Heterostructures......Page 646
Basics of the Conductance Quantization......Page 647
Breakdown of Quantized Conductance due to Impurities......Page 650
QPC as a Charge Detector......Page 651
Shot Noise in QPC......Page 653
Depopulation of Magnetosubbands: Basics......Page 654
Interacting Electrons in Quantum Point Contact......Page 656
Quantum Point Contact in the Quantum Hall Regime......Page 658
Experimental Evidence of 0.7 Anomaly......Page 660
Theoretical Models for 0.7 Anomaly......Page 662
0.7 Anomaly and Kondo Physics......Page 663
References......Page 664
Part VII: Nanoscale Rings......Page 667
39.2 Why Is Ring Shape Important?......Page 668
Ring Formation by Evaporation-Induced Self-Assembly......Page 670
Ring Formation Induced by Chemical Reaction......Page 671
Ring Formation by Template-Based Approach......Page 672
39.4 Types of Nanorings......Page 674
Carbon Nanorings......Page 675
Metal Oxide/Sulfide Nanorings......Page 677
Organic Nanorings......Page 679
References......Page 682
40.2 Background......Page 684
General Theory......Page 687
Gaussian Fluctuations......Page 689
Thermally Activated Phase Slips......Page 690
Quantum Phase Slips......Page 692
Persistent Currents and Quantum Phase Slips......Page 698
Parity Effect and Persistent Currents......Page 700
40.5 Summary......Page 705
References......Page 706
41.1 Introduction......Page 708
41.2 Background......Page 709
41.3 Magnetic States......Page 710
Uniform Field......Page 712
Circular Field......Page 714
References......Page 715
42.1 Introduction......Page 717
42.2 Model of Quantum Dot Nanorings......Page 718
42.3 Tunable Electron Correlations......Page 719
Case of Closed Shells......Page 720
Case of Open Shells......Page 721
42.5 Avoided Crossings......Page 722
42.6 Hidden Quasi-Symmetry......Page 723
42.7 Photoionization......Page 724
42.8 High Harmonic Generation by QD Nanorings......Page 725
42.9 Quantum Phase Transitions......Page 726
42.10 Related Systems: Kondo Eff ect......Page 727
42.11 Conclusion......Page 728
References......Page 729