Covering the key theories, tools, and techniques of this dynamic field, Handbook of Nanophysics: Principles and Methods elucidates the general theoretical principles and measurements of nanoscale systems. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume explores the theories involved in nanoscience. It also discusses the properties of nanomaterials and nanosystems, including superconductivity, thermodynamics, nanomechanics, and nanomagnetism. In addition, leading experts describe basic processes and methods, such as atomic force microscopy, STM-based techniques, photopolymerization, photoisomerization, soft x-ray holography, and molecular imaging. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.
Author(s): Klaus D. Sattler
Edition: 1
Publisher: CRC Press
Year: 2010
Language: English
Commentary: index is missing
Pages: 776
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Физика наноразмерных систем;Справочники, каталоги, таблицы
Contents......Page 6
Preface......Page 9
Acknowledgments......Page 11
Editor......Page 12
Contributors......Page 13
Part I: Design and Theory......Page 17
1.2 Conceptual Models......Page 18
1.3 Nanotubes, Fullerenes, and Graphene......Page 19
References......Page 20
2.1 Introduction......Page 22
Introduction......Page 23
Thermodynamics Model of Clathrate Structures with Multiple Degree of Occupation......Page 24
Introduction......Page 25
Argon Clathrate Hydrates with Multiple Degree of Occupation......Page 26
Hydrogen Clathrate Hydrate......Page 30
Guest–Guest and Guest–Host Interactions in Hydrogen Clathrate......Page 33
Mixed Methane–Hydrogen Clathrate Hydrate......Page 35
Introduction......Page 37
Metal Organic Frameworks as Hydrogen Storage Materials......Page 38
Organic Materials as Hydrogen Storage Media......Page 40
References......Page 42
3.1 Introduction......Page 46
3.2 Th e Quantum Problem......Page 47
Constructing Pseudopotentials from Density Functional Th eory......Page 48
Algorithms for Solving the Kohn–Sham Equation......Page 50
Silicon Nanocrystals......Page 52
Iron Nanocrystals......Page 60
3.4 Conclusions......Page 63
References......Page 64
Interplay between Theory and Experiments: A Necessity at the Nanoscale......Page 67
4.2 Small Is Different: The Unfolding of Surprises......Page 68
4.3 Method of Calculation......Page 69
Clusters of s-p Bonded Systems: Magic Clusters and Superatoms......Page 70
Bare and Hydrogenated Clusters of Silicon......Page 73
Metal-Encapsulated Nanostructures of Silicon: Discovery of Silicon Fullerenes and Nanotubes......Page 75
Clusters and Nanostructures of Transition Metals: Designing Novel Catalysts......Page 79
Novel Structures of CdSe Nanoparticles......Page 83
Nanostructures of Mo–S: Clusters, Platelets, and Nanowires......Page 84
4.6 Summary......Page 85
References......Page 86
5.1 Introduction......Page 90
5.2 Cluster Structural Features on the Potential Energy Surface......Page 91
5.3 Considerations in Cluster Energy Calculations......Page 92
5.4 Computational Approach to Finding a Global Minimum......Page 93
5.5 Example Applications: Predicting Structures of Passivated Si Clusters......Page 95
References......Page 99
Part II: Nanoscale Systems......Page 102
6.1 Introduction......Page 103
6.2 Assumptions and Limitations of the NFEM......Page 104
WKB Approximation......Page 105
Material Dependence......Page 107
Force......Page 108
6.5 Linear Stability Analysis......Page 109
Quantum-Mechanical Stability Analysis......Page 110
Breaking Axial Symmetry......Page 111
General Stability of Cylinders......Page 112
Material Dependence......Page 113
6.6 Summary and Discussion......Page 114
References......Page 115
7.2 Systems in Equilibrium......Page 117
Fundamental Laws of Thermodynamics......Page 118
Thermodynamics of a System in a Heat Bath......Page 119
Statistical Mechanics and the Boltzmann Distribution......Page 120
7.3 Nonequilibrium Systems......Page 122
Kramers Formula......Page 123
Fluctuation–Dissipation Relations......Page 125
Jarzynski’s Equality......Page 127
Crooks Fluctuation Theorem......Page 129
References......Page 132
8.1 Introduction: Significance of Ion Conduction......Page 133
8.2 Ionic Charge Carriers: Concentrations and Mobilities......Page 134
8.3 Ionic Charge Carrier Distribution at Interfaces and Conductivity Effects......Page 137
8.4 Mesoscopic Effects......Page 140
8.5 Consequences of Curvature for Nanoionics......Page 142
References......Page 143
9.1 Introduction......Page 145
9.2 Theoretical Formalism......Page 146
Bogoliubov–de Gennes Equations for Nanoscale Superconductors......Page 147
Anderson’s Solution......Page 151
Physics behind Quantum-Size Oscillations......Page 156
Quantum-Size Oscillations and Superconducting Resonances in Nanofilms......Page 162
Superconducting Resonances in Nanowires......Page 164
New Andreev-Type States due to Quantum Confinement......Page 167
Quantum-Size Cascades......Page 169
References......Page 172
10.1 Introduction......Page 176
10.2 Noninteracting Fermions and the Harmonic Chain......Page 177
10.3 Th e Tomonaga–Luttinger Model......Page 180
10.4 Non-Fermi Liquid Properties......Page 182
References......Page 185
What Is Different on the Nanoscale?......Page 187
Bottom-Up Approaches......Page 188
Top-Down Approaches......Page 191
X-Ray and Neutron Scattering......Page 193
Wetting......Page 194
Moving Three-Phase Contact Lines......Page 197
Dewetting of Thin Films......Page 198
Topography......Page 200
Chemically Inhomogeneous Substrates......Page 202
References......Page 204
Physics of Capillary Condensation......Page 210
Mesoporous Systems......Page 213
Measurements by SFA......Page 214
Measurements by Atomic Force Microscopy......Page 217
Measurements in Sharp Cracks......Page 219
Static Friction and Powder Cohesion......Page 221
Time and Velocity Dependence in Nanoscale Friction Forces......Page 223
12.4 Influence on Surface Chemistry......Page 224
References......Page 225
13.1 Introduction......Page 227
Growth and What Stops It......Page 228
Vibrational Spectra of Quantum Dots......Page 229
Dynamics and Nanocrystal Structure......Page 231
13.3 Cycles of Excitation and Luminescence......Page 233
Electron–Phonon Coupling and Huang–Rhys Factors......Page 234
13.5 Scent Molecule: Nasal Receptor......Page 235
References......Page 237
14.1 Introduction......Page 240
14.2 Solid/Liquid Interface from a Molecular Point of View......Page 242
14.3 Tunneling Process at Solid/Liquid Interfaces......Page 243
14.4 Electrochemical Processes at Nanoscale......Page 244
14.5 Localization of Electrochemical Processes......Page 246
14.6 Beyond Electrochemical Processes: In-Situ Tunneling Spectroscopy......Page 248
14.7 Beyond Electrochemical Processes: In-Situ Electrical Transport Measurements at Individual Nanostructures......Page 251
Importance of Nanoelectrode Tip Shape and Surface Quality......Page 253
Electronic/Measurement Bandwidth Considerations......Page 254
References......Page 256
Part III: Thermodynamics......Page 258
15.1 Introduction......Page 259
Surface Thermodynamics......Page 260
Hill’s Nanothermodynamics......Page 263
Tsallis' Thermostatistics......Page 270
Superstatistics......Page 272
Nonequilibrium Approaches......Page 273
15.4 Critical Discussion and Summary......Page 276
References......Page 277
16.1 Introduction......Page 281
Calculation of Thermal Conductivity for Pure Solids......Page 282
Calculation of Thermal Conductivity for Nanoparticles......Page 284
Results and Comparison with Experimental Data......Page 287
Calculation of Viscosity for Pure Fluid......Page 288
Calculation of Effective Viscosity for Nanofluids......Page 290
Calculation of Thermodynamic Properties of Pure Solids......Page 291
Results and Comparison
with Experimental Data......Page 293
References......Page 294
17.1 Introduction......Page 296
A Few Generalities about Individual
Modes......Page 297
Calculation of Frequencies......Page 298
Vibrations in Crystals of Nanoscale Objects......Page 299
Frequency versus Time-Resolved Experiments......Page 300
Time-Resolved Experiments......Page 301
Vibration of Nanospheres......Page 302
Other Geometries......Page 304
17.4 Collective Acoustic Modes......Page 305
Under a Particular Experimental Condition, Strong Oscillations Appear......Page 306
Interpretation......Page 307
Experimental Confirmations of the Model......Page 308
Conclusion about Collective Modes......Page 309
Acoustic Phonon Emission from Quantum Dot Layers......Page 310
Arrays of Nanocubes as High- Frequency Surface Acoustic Wave Emitter......Page 313
17.6 Conclusion......Page 316
References......Page 317
What Are Atomic Clusters?......Page 319
Atomic Clusters at Finite Temperature......Page 321
18.2 Theoretical Background......Page 322
Density Functional Theory......Page 323
Ingredients......Page 325
18.4 Data Analysis Tools......Page 327
Traditional Indicators of Melting......Page 328
Multiple Histogram Method......Page 330
Melting of Bulk Systems......Page 331
Melting of Atomic Clusters......Page 332
References......Page 339
19.2 Is the Gibbs Thermodynamics Adapted to Describe the Behaviors of Nanosystems?......Page 341
19.3 The Bases of Nonextensive Thermodynamics......Page 342
Conceptual Bases of Nonextensive Thermodynamics......Page 343
Melting Point......Page 344
Extensity Is an Area......Page 345
General Case. Power Laws: Consequence of the NET......Page 346
Nanoparticles......Page 347
Films......Page 348
Melting Point Elevation......Page 349
19.6 Conclusion......Page 350
References......Page 351
20.1 Introduction......Page 353
20.2 Evidence from Simulation of Bands of Coexistence of Phases of Small Nanoparticles......Page 355
20.3 Thermodynamic Interpretation of Bands of Coexisting Phases......Page 358
20.4 Phase Diagrams for Clusters......Page 360
20.5 Observability of Coexisting Phases......Page 361
20.6 Phase Changes of Molecular Clusters......Page 362
20.8 Summary......Page 364
References......Page 365
21.1 Introduction......Page 368
21.2 Nanothermodynamics......Page 370
21.3 Phase Equilibria and Phase Diagram of Bulk and Nanocarbon......Page 371
21.4 Solid Transition between Dn and Gn with the Effects of γ and ƒ......Page 372
21.5 Relative Phase Stabilities of Dn, Compared with B, O, and F......Page 373
21.6 Graphitization Dynamics of Dn......Page 374
21.7 Summary and Prospects......Page 375
References......Page 376
Part IV: Nanomechanics......Page 379
22.1 Introduction......Page 380
Mechanics of a System of Particles......Page 381
Molecular Forces......Page 383
Numerical Heat Bath Techniques......Page 388
Molecular Dynamics Applications......Page 391
MAAD......Page 396
Coarse-Grained Molecular Dynamics......Page 397
Quasicontinuum Method......Page 398
Bridging Scale Method......Page 399
Predictive Multiresolution Continuum Method......Page 402
Introduction......Page 405
Electrohydrodynamic Coupling......Page 407
Nanostructure Assembly Driven by Electric Field and Fluid Flow......Page 409
Ion and Liquid Transportation in Nanochannels......Page 410
References......Page 418
23.2 Nonlinear Normal Stress–Strain Law......Page 423
23.3 Cohesion Energies......Page 424
23.5 Nonlinear Shear Stress–Strain Law......Page 425
23.7 Comparison with the Literature......Page 426
23.9 Periodic Table for the Nanomechanical Properties of Elements......Page 427
23.10 Example of Application: Nonlinear Elasticity and Strength of Graphene......Page 428
References......Page 430
General Classification of the Modeling Levels......Page 432
Examples of Research Areas with Specific Length Scales......Page 433
"Macro," "Meso," "Micro," and "Nano": A Very Conditional Classification......Page 434
Main Research Areas in Nanomechanics......Page 435
New Incarnation of an Old Idea......Page 436
Structural Model......Page 437
Application of the Muskhelishvili Complex Potentials......Page 438
Computing the Effective Constants for a Particular Composition......Page 440
24.4 Discussion......Page 441
References......Page 442
Part V: Nanomagnetism and Spins......Page 444
25.1 Introduction......Page 445
25.2 What Are Nonmagnetic Materials?......Page 446
25.3 Formation of Magnetic State through Introducing Nonmagnetic sp Elements to Nonmagnetic Matrices......Page 447
Discovery......Page 448
Disproof......Page 449
Rebuttal......Page 450
Zink Oxide......Page 451
Titanium Oxide......Page 452
Other Nonmagnetic Oxides......Page 453
25.6 Magnetism in Metal Nanoparticles......Page 454
25.7 Magnetism in Semiconductor Nanostructures......Page 456
Carbon Nanoparticles......Page 457
Nanographite......Page 458
Magnetic Nature of Intrinsic Carbon Defects......Page 459
Magnetism of Graphene......Page 462
25.9 Possible Traps in Search of Magnetic Order......Page 463
25.10 Nontrivial Role of Transition Metals: Charge Transfer Ferromagnetism......Page 464
25.12 Conclusions......Page 465
References......Page 466
26.1 Introduction......Page 475
From Thin Films to Wires and Dots: The Lateral Confinement......Page 476
Fundamental Properties of Magnetic Bodies......Page 478
Nanofabrication by Focused Ion Beam (FIB)......Page 486
Magnetocrystalline and Configurational Anisotropies in Fe Nanostructures......Page 489
Ion Irradiation......Page 490
High-Density Magnetic Media Patterned by FIB......Page 493
Sculpting by Broad Ion Beams......Page 494
Beam-Induced Deposition......Page 495
26.5 Outlook......Page 496
References......Page 497
27.1 Introduction......Page 500
Static Magnetic Structures......Page 501
Dynamics of Small Magnetic Structures......Page 503
27.3 Selected Experimental Results......Page 505
Gyration and Switching of the Vortex Core......Page 506
Switching of a Néel Domain Wall by an Antivortex......Page 508
Reversing the Magnetization by a Vortex......Page 509
References......Page 511
28.1 Introduction......Page 513
28.2 Advent of Organics......Page 514
Introduction: The Rise of Organic Spintronics......Page 515
Spin-Valve Devices......Page 516
Spin Relaxation Mechanisms......Page 519
28.4 Spin Transport in Organic Semiconductors: Organic Spin Valves......Page 520
28.5 Spin Transport in the Alq3 Nanowires......Page 522
Experimental Details......Page 523
Calculation of Spin Relaxation (or Spin Diffusion) Length Ls......Page 526
Calculation of the Spin Relaxation Time τs......Page 529
Correlation between Sign of Spin-Valve Peak and Sign of Background Magnetoresistance......Page 530
28.6 The Transverse Spin Relaxation Time in Organic Molecules: Applications in Quantum Computing......Page 532
Application in Quantum Computing......Page 535
28.7 A Novel Phonon Bottleneck in Organics?......Page 536
References......Page 537
Part VI: Nanoscale Methods......Page 542
29.1 Introduction......Page 544
Spectroscopic Ellipsometry......Page 545
Low-Angle X-Ray and Reflectivity Techniques on the Nanoscale......Page 568
Nanoindentation Techniques......Page 574
Scanning Probe Microscopy......Page 581
29.3 Summary......Page 590
References......Page 591
30.2 Online Characterization and Classification of Aerosol Nanoparticles......Page 595
Particle Synthesis by Electrohydrodynamic Atomization......Page 598
Particle Synthesis from the Vapor Phase......Page 600
30.4 Conclusions......Page 609
References......Page 610
General 3D Imaging......Page 615
Alignment and Reconstruction Algorithms......Page 616
Electron Tomography......Page 619
X-Ray Nanotomography......Page 624
Hybrid Electron/X-Ray Nanotomography......Page 625
Background......Page 628
Focused-Ion Beam Tomography......Page 629
3D Atom Probe......Page 630
31.4 Discussion and Conclusions......Page 631
References......Page 632
32.1 Introduction......Page 636
The Origin: Scanning Tunneling Microscopy......Page 637
Th e Next Generation: Atomic Force Microscopy......Page 638
Resolution......Page 639
Separation of Control and Measurement Variables......Page 640
Image Convolution......Page 641
Short-Range Interactions......Page 642
Cumulative Interactions......Page 643
Imaging Orbitals......Page 644
Force Spectroscopy......Page 645
Tribology......Page 646
32.5 Outlook and Perspectives......Page 647
References......Page 649
33.1 Introduction......Page 653
Overview......Page 654
Cantilever Model......Page 655
Linearized Tip-Sample Interaction......Page 657
Nonlinear Dynamics......Page 658
Signal Formation in AFM......Page 660
Identification of the Transfer Function......Page 661
Signal Inversion......Page 663
References......Page 665
34.1 Introduction......Page 669
Thermal Expansion Effect......Page 670
Tip Shape Effect......Page 671
Tip-Induced Band Bending and Surface Photovoltage......Page 672
Light-Modulated Scanning Tunneling Spectroscopy......Page 673
Femtosecond Time-Resolved STM......Page 675
With Optical Manipulation......Page 678
STM-Induced Light Emission......Page 680
With Near-Field Optics......Page 681
34.5 Summary......Page 682
References......Page 683
35.1 Introduction......Page 685
Surfaces......Page 688
Adatoms......Page 690
Conductance and Local Heating of a C60 Molecule......Page 691
Conductance of Oriented Molecular Orbitals......Page 693
Orientation Change in a Single-Molecule Contact......Page 695
References......Page 697
Optical Near-Field......Page 701
Hierarchical Nature of Near-Field Interactions......Page 702
36.3 Half-Space Problem and Evanescent Waves......Page 703
36.4 Angular Spectrum Representation of Optical Near-Field......Page 704
36.5 Electric Dipole Radiation Near a Dielectric Surface......Page 706
36.6 Quantum Theory of Optical Near-Fields......Page 708
References......Page 711
37.1 Introduction......Page 712
Examples of Optical Nanosources......Page 714
37.3 Nanoscale Photopolymerization......Page 717
Photopolymerization Using Evanescent Waves......Page 718
Plasmon-Induced Photopolymerization......Page 719
37.4 Nanoscale Photoisomerization......Page 722
Tip-Enhanced Near-Field Photoisomerization......Page 723
Plasmon-Based Near-Field Photoisomerization......Page 724
Model of Optical Matter Migration......Page 726
References......Page 727
38.1 Introduction......Page 730
38.2 Principles of Holography......Page 731
Wave Propagation and Diffraction......Page 732
Optical Constants......Page 733
Gabor X-Ray Holography......Page 734
Fourier Transform X-Ray Holography......Page 735
Holographic Mask Fabrication......Page 736
Compensation for Extended References......Page 737
Multiple References and Coded Apertures......Page 738
Spectroscopy and Multiple-Wavelength Anomalous Diffraction......Page 739
38.4 Ultrafast X-Ray Holography......Page 740
Time-Delay X-Ray Holography......Page 741
References......Page 742
39.1 Overview of Single-Biomolecule X-Ray Diffraction Imaging......Page 745
Optical Microscope......Page 747
From the Optical Microscope to the Lens-Less Diffraction Microscope......Page 748
Diffraction from a Small Object......Page 749
History (Robinson and Miao, 2004)......Page 750
Interaction of X-Ray with Matter......Page 751
Thomson Scattering......Page 753
Sample Damage Problem......Page 754
Demonstration of Ultrafast Diffractive Imaging......Page 755
Demonstration of Diffractive Imaging of Nanoscale Specimen in Free Flight......Page 756
Introduction......Page 757
Heterodyne Detection......Page 758
Demonstration of Coherent Amplification......Page 759
Three-Dimensional Structure Reconstruction......Page 760
39.8 X-Ray Free-Electron Laser......Page 761
References......Page 764
40.2 DNA as a Material for Molecular Design......Page 766
40.4 Clonal Amplification of Nucleic Acid Molecules......Page 767
40.7 Need for Improved Molecular Detection......Page 769
40.8 Pushing Detection to the Limit of Single Molecules......Page 770
40.10 Proximity Ligation for Advanced Protein Analyses......Page 771
40.11 Read-Out of Molecular Detection Reactions......Page 772
40.12 Conclusions and Future Perspectives......Page 774
References......Page 775