Handbook of Applied Superconductivity

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The Handbook of Applied Superconductivity, Two-Volume Set covers all important aspects of applied superconductivity and the supporting low-temperature technologies. The handbook clearly demonstrates the capabilities of superconducting technologies and illustrates how to implement these technologies in new areas of academic and industrial research and development. Volume One provides an introduction to the theoretical background of both low and high Tc superconductivity, followed by details of the basic hardware such as wires, tapes, and cables used in applications of superconductivity and the necessary supporting science and technology. Theoretical discussions are in most cases followed by examples of real designs, fabrication techniques, and practical instrumentation guidance. A final chapter examines materials properties at low temperatures. Volume Two provides examples of current and future applications of superconductivity. It covers medical systems for magnetic resonance imaging (MRI), high field magnets for research, superconducting magnets for accelerators, industrial systems for magnetic separation, and transportation systems. The final chapters look to future applications in power and superconducting electronics. With fully referenced, peer-refereed contributions from experts in various fields, this two-volume work is an essential reference for a wide range of scientists and engineers in academic and industrial research and development environments.

Author(s): B Seeber
Edition: 1
Publisher: Taylor & Francis
Year: 1998

Language: English
Commentary: section D1, pages 603-638 are missing
Pages: 1841
Tags: Физика;Физика твердого тела;Физика сверхпроводимости;

cover.jpg......Page 1
Handbook of Applied Superconductivity Volume 1: Fundamental theory, basic hardware and low-temperature science and technology......Page 2
In memoriam: Anthony Derek Appleton......Page 5
Contents......Page 7
List of contributors......Page 12
Foreword......Page 18
Preface......Page 20
A1.0.1 Basic properties of a superconducting state......Page 22
Table of Contents......Page 0
A1.0.1.1 The basic quantities Tc, Hc and Ic......Page 23
A1.0.1.3 Flux quantization and the Josephson effect......Page 24
A1.0.1.4 Magnetic properties of type I superconductors......Page 25
A1.0.1.5 The intermediate state of type I superconductors......Page 27
A1.0.2.1 Equations of two-fluid electrodynamics......Page 29
A1.0.2.2 London penetration depth......Page 30
A1.0.2.3 Current and field distributions for simple geometries (examples)......Page 31
A1.0.2.4 Complex conductivity and surface impedance......Page 33
A1.0.2.5 Advantages and limitations of the London theory......Page 35
A1.0.3.1 The Ginzburg-Landau equations......Page 36
A1.0.3.3 The boundary between superconducting and normal phases. Two kinds of superconductor......Page 38
A1.0.3.4 The proximity effect......Page 40
A1.0.3.5 The critical field and critical current of a thin film......Page 41
A1.0.4.1 Energy spectrum, energy gap and density of states......Page 42
A1.0.4.2 The relation between the BCS and the GL theories......Page 45
A1.0.5.1 Single-particle tunneling......Page 47
A1.0.5.2 Josephson tunneling......Page 49
References......Page 53
Further reading......Page 54
From Shubnikov’s experiments (1937) to Abrikosov’s theory (1957)......Page 56
A2.0.2.1 The electromagnetic region ( λ) and core region ( ξ). Exact solution for κ >> 1.......Page 57
A2.0.2.3 A vortex near an interface and in a thin film......Page 59
A2.0.3.1 The interaction force between vortices and the lattice configuration......Page 60
A2.0.3.2 The upper critical field......Page 61
A2.0.3.3 Reversible magnetization......Page 62
A2.0.4.1 Drag force by external current......Page 63
A2.0.4.2 Vortex pinning......Page 64
A2.0.4.3 Critical state at zero temperature......Page 66
A2.0.5.1 Flux-flow resistivity......Page 67
A2.0.5.2 Flux creep and current-voltage characteristics......Page 68
References......Page 70
Further reading......Page 71
A3.0.1.1 The discovery of 90 K superconductivity and further progress......Page 72
A3.0.1.2 Unusual properties. BCS versus nonBCS superconductivity......Page 73
A3.0.2 The phenomenology of high-T, superconductors......Page 76
A3.0.3 Potential applications......Page 79
References......Page 80
Further reading......Page 81
B1.0.1 Introduction......Page 82
B1.0.3 The Bean model......Page 83
B1.0.3.2 Field-dependent Jc......Page 85
B1.0.4 Magnetization......Page 86
B1.0.5.2 Full penetration......Page 87
B1.0.5.3 Cylinders in a transverse field......Page 88
B1.0.5.5 Strips......Page 89
B1.0.7 Field cooling (the Meissner effect)......Page 90
B1.0.9 Granular superconductors......Page 91
B1.0.9.3 Superconductors in iron circuits......Page 92
References......Page 93
B2.0.1 Introduction......Page 95
B2.0.3.1 Type I superconductors......Page 96
(a) Critical currents......Page 98
(b) Currents in superconducting composites......Page 99
B2.0.3.3 High-Tc superconductors......Page 101
B2.0.4.1 Relation between currents in strands and cables......Page 102
(a) Currents between adjacent strands......Page 103
(b) Currents between opposite strands......Page 106
Finite samples in homogeneous fields......Page 108
Cables in inhomogeneous fields......Page 109
B2.0.5 Comments......Page 111
References......Page 112
B3.1.1 Thermal multistability in a current-carrying composite......Page 115
B3.1.2 Quench propagation in a current-carrying composite......Page 121
B3.1.3 Quench energy......Page 128
B3.1.4 Summary......Page 134
References......Page 135
B3.2.1 The origin of magnetic flux jumping......Page 136
B3.2.2 A qualitative consideration of magnetic flux jumping......Page 138
B3.2.3 Flux jumping in the ‘local’ level: the stability criterion......Page 140
B3.2.3.1 Superconducting filament stability......Page 141
B3.2.3.2 Coated superconducting filament stability......Page 143
B3.2.4 Flux jumping in the ‘global’ level: stability criterion......Page 145
B3.2.5 The current-carrying capacity of a wire......Page 147
B3.2.6 Summary......Page 149
Appendix A Current-voltage characteristics of a superconductor......Page 150
Appendix B Background electric field: current-carrying wire......Page 152
References......Page 153
B3.3.1 Introduction......Page 155
B3.3.2.1 Flux jumps in a superconducting slab—adiabatic stability limit......Page 156
B3.3.3 Cryostability......Page 159
B3.3.3.1 The BEBC magnet......Page 161
B3.3.4.1 MRI magnets......Page 162
B3.3.4.2 The Euratom LCT coil......Page 164
B3.3.4.3 The Tore Supra toroidal field magnet......Page 165
References......Page 166
B3.4.2 Stability and a brief history of CICCs......Page 167
B3.4.3 Experimental results and the interpretation of the stability margin in CICCs......Page 169
B3.4.4 Calculation of the stability margin......Page 173
1D models......Page 174
Zero-dimensional models......Page 176
Energy balance......Page 177
B3.4.5 Stability-optimized CICCs......Page 178
B3.4.6 Research directions......Page 179
Case study 1 Heat sink provided by the helium......Page 181
Case study 2 Optimization of a CICC for fusion application......Page 182
Appendix A Transient heat transfer to supercritical helium......Page 183
Appendix B Stability measurement techniques in CICCs......Page 184
References......Page 186
B4.1.1 Conductor development......Page 188
B4.1.2 Orders of magnitude......Page 189
Flux pinning and losses......Page 191
B4.1.3.2 A simple loss calculation......Page 193
B4.1.4.1 Derivation of coupling currents......Page 195
B4.1.4.2 Time constants......Page 196
B4.1.5.1 Saturation......Page 197
B4.1.5.2 Transport currents......Page 198
B4.1.6 High-Tc, materials......Page 199
References......Page 200
B4.2.2.2 Magnetic hysteresis......Page 201
B4.2.2.4 Losses from the flux......Page 202
B4.2.3.1 Low amplitudes......Page 203
B4.2.3.4 Combined currents and fields......Page 204
B4.2.3.5 Field-dependent critical current densities......Page 205
Conductors perpendicular to the field......Page 206
B4.2.4.2 Low-amplitude oscillating fields......Page 207
B4.2.4.3 Self-field losses due to transport currents in various conductors......Page 208
B4.2.5 Low amplitudes in fine filaments......Page 210
B4.2.7 High-Tc materials......Page 211
B4.2.9 Longitudinal losses and inclined fields......Page 213
B4.2.11.1 Calorimetric methods......Page 214
B4.2.11.2 Electrical methods......Page 215
B4.2.12 Numerical methods......Page 217
References......Page 218
B4.3.2.1 Coupling-current loss in round twisted multifilamentary composites with a normal-metal matrix......Page 220
Remark on loss measurements......Page 222
B4.3.2.3 Coupling-current loss in multizone multifilamentary composites......Page 223
(e) Time constant due to eddy currents......Page 225
B4.3.3 Evaluation of the transverse resistivity......Page 226
B4.3.4.1 Copper matrix Nb—Ti composite......Page 227
(a) Round version......Page 228
B4.3.5 Losses in a composite subjected to a transverse external harmonic magnetic field......Page 230
(a) No saturation of the external layer......Page 231
(b) Saturation of the external layer......Page 232
B4.3.6 Losses in a composite submitted to an exponential external variation......Page 233
B4.3.7. Losses in a composite submitted to a low-rate ramp......Page 235
B4.3.8.1 Evaluation of the time constant for multistage twisted circular cables......Page 236
(1) Contact resistance measurement......Page 238
B4.3.8.3 Evaluation of the time constant for Rutherford cables......Page 239
(c) Discussion of the time constant control in Rutherford cables (Devred and Ogitsu 1996)......Page 240
B4.3.9.1 General......Page 241
(a) Type 1 current distribution......Page 243
(b) Type 2 current distribution......Page 244
References......Page 246
B4.4.1 Introduction......Page 247
B4.4.2 Mathematical aspects......Page 249
B4.4.3.1 Set of equations......Page 250
B4.4.3.2 Boundary conditions......Page 253
Boundary condition at r = R for the magnetic field for a φ-invariant problem......Page 255
B4.4.3.3 The stationary solution......Page 256
B4.4.3.5 Worked example......Page 257
B4.4.4 The network method applied to a cable......Page 260
References......Page 262
B5.0.1 Introduction......Page 264
B5.0.2 Network model of a Rutherford-type cable......Page 265
B5.0.3 Weak excitation: general formulae for a cable with constant parameters......Page 267
B5.0.4 Strong excitation......Page 271
B5.0.5 Cables with varying parameters across the cable width......Page 273
B5.0.7 The impact of the interstrand coupling currents on the characteristics of magnets......Page 274
B5.0.8 The cross-contact resistance Rc......Page 276
B5.0.9 Worked example......Page 277
References......Page 278
Further Reading......Page 279
B6.0.1 Introduction......Page 280
B6.0.2 The cable-in-conduit history......Page 282
B6.0.3 Manufacturing and design issues in cable-in-conduit superconductors......Page 283
B6.0.3.1 The conduit......Page 284
B6.0.3.3 The chromium coating......Page 285
B6.0.3.4 The internal arrangement......Page 286
B6.0.4.1 Limits on permanent heat load extraction in a cable-in-conduit superconductor......Page 287
B6.0.4.2 Transients and train effect on double-channel systems......Page 291
B6.0.5 General optimization of a cable-in-conduit conductor......Page 292
B6.0.5.2 Hot-spot temperature criterion......Page 293
Remarks on the available energy in helium......Page 294
References......Page 295
B7.1.2 Critical temperature: Tc (B)......Page 296
B7.1.3 Basic measurement techniques for Tc......Page 297
B7.1.4 Rapid screening for superconductivity......Page 299
B7.1.5 Measurements on practical wires and cables......Page 300
B7.1.7 Analysis and modelling†......Page 302
Further reading......Page 308
B7.2.1 Introduction......Page 310
B7.2.2 Critical fields: Bc, Bc2, Birrev and Bp......Page 311
B7.2.3.2 AC susceptibility measurements......Page 312
B7.2.3.3 Resistive measurements......Page 313
B7.2.3.4 Specific heat measurements......Page 314
B7.2.4 Measurement techniques for the irreversibility field, Birrev......Page 315
B7.2.5 Measurements of the macroscopic flux penetration field, Bp†......Page 316
References......Page 319
Further reading......Page 321
B7.3.2 Sample holders......Page 322
B7.3.3 Background field......Page 328
B7.3.4 Measurement technique......Page 329
B7.3.5.1 Standard analysis......Page 330
B7.3.5.2 Advanced analysis......Page 332
B7.3.5.3 Scaling law......Page 333
Appendix A Nb—Ti wires......Page 334
Appendix B Nb3Sn wires......Page 336
References......Page 338
B7.4.1 Introduction......Page 340
B7.4.3 The transformer methods......Page 341
B7.4.4 The indirect transformer method......Page 342
B7.4.5 The direct transformer method......Page 344
B7.4.6 Overview of the experimental set-ups......Page 346
B7.4.7 Methods for measuring the current......Page 347
B7.4.8 Mechanical supports......Page 349
B7.4.9 Heater and electrical joints......Page 351
B7.4.10 Typical measurement by the direct transformer method......Page 352
B7.4.11 Measurement error analysis......Page 354
B7.4.12 The self-field correction......Page 355
B7.4.13 Summary......Page 357
References......Page 358
B7.5.1 Introduction......Page 359
B7.5.2.1 Method and techniques of isothermal calorimetry......Page 360
B7.5.2.2 Method and techniques of adiabatic calorimetry......Page 362
B7.5.2.3 Method and techniques of semi-adiabatic calorimetry......Page 363
B7.5.3 Electromagnetic methods and techniques......Page 364
B7.5.3.1 Methods and techniques for measuring magnetization a.c. losses due to a periodic external magnetic field Ha......Page 367
(a) Fluxmetric methods to measure the Poynting’s vector influx......Page 372
(i) Magnetization hysteresis loop measurement using an electronic integrator......Page 373
(ii) Magnetization a.c. loss measurement using a phase-sensitive detector......Page 375
(iii) Magnetization a.c. loss measurement using an electronic wattmeter......Page 376
(i) The vibrating-sample magnetometer technique......Page 377
(iii) Measurement techniques using Hall probes......Page 379
(iv) Magnetic dipole moment measurement with a SQUID magnetometer......Page 381
(i) Pickup coil technique for the measurement of coupling-current time constants......Page 383
(ii) Method using an LC resonance circuit with a superconducting coil......Page 388
(iii) Method using a torsion resonance oscillating system......Page 389
(i) Balance method......Page 390
(ii) Alternating-gradient magnetometer......Page 391
(iii) Cantilever magnetometer......Page 392
(a) Electrical measurement of a.c. losses in superconducting magnets and windings......Page 393
(i) A wattmeter using a Hall probe......Page 394
(ii) Wattmeter using a Hall probe and the compensation of the inductive component of the terminal voltage inductive component......Page 395
(iii) A wattmeter using an electronic integrator (Wilson’s method)......Page 396
(iv) A wattmeter using double integration......Page 397
(vi) A wattmeter using digital data processing......Page 398
(i) Elements and schemes for spurious signal compensation......Page 399
(ii) A wattmeter using the phase-sensitive detector of a lock-in amplifier......Page 401
(iii) Apparatus with a selective nanovoltmeter and compensating coil......Page 402
(iv) A.c. loss measurement in tape samples—the role of the voltage tap position and of the form of the potential leads......Page 403
B7.5.3.3 Measurement of a.c. losses due to an a.c. field Ha and current I......Page 405
B7.5.4 Measurement of a.c. losses due to mechanical effects......Page 406
B7.5.4.1 Method for the measurement of losses due to external friction......Page 407
References......Page 408
B8.1.1 Introduction......Page 412
B8.1.2.1 Superconductor material selection......Page 413
B8.1.2.2 Magnetization and stabilization......Page 414
B8.1.2.3 Effects of filament coupling......Page 418
B8.1.3 Conductor fabrication......Page 419
B8.1.4 Mechanical properties and strain sensistivity......Page 422
B8.1.5.1 NbTi conductors......Page 424
B8.1.5.2 Nb,Sn conductors......Page 425
B8.1.5.3 Cabled conductors......Page 427
Further reading......Page 429
B8.2.2 Wire design......Page 430
B8.2.3 Critical currents......Page 431
B8.2.4.1 Proximity effects......Page 433
B8.2.4.2 Flux-line effects in fine filaments......Page 434
B8.2.4.3 Losses of 50–60 Hz windings......Page 435
B8.2.5 Stability......Page 436
B8.2.6 Protection......Page 438
B8.2.7 High-current conductors......Page 440
References......Page 442
B9.1.1 Introduction......Page 443
B9.1.3 Fabrication of wires......Page 444
B9.1.4.1 Critical temperature......Page 445
B9.1.4.2 Upper critical field......Page 447
B9.1.5.1 Critical current density......Page 449
B9.1.5.2 Critical current density under mechanical stress......Page 454
B9.1.7 Thermal stabilization......Page 455
References......Page 457
B9.2.2.1 General remarks......Page 460
B9.2.2.2 Y-Ba-Cu oxide......Page 462
B9.2.2.4 Tl—Ba—Ca—Cu—O......Page 463
B9.2.3.1 Y-Ba-Cu oxide......Page 464
(a) Bi-22212 tapes......Page 466
(b) Bi-22212 wires......Page 468
(c) Bi-22223 tapes......Page 469
(d) Current transport in BSCCO......Page 471
(e) Technical aspects......Page 473
B9.2.3.3 Tl-Ba-Ca-Cu oxide......Page 474
B9.2.4 Other possible applications of bulk HTS materials......Page 475
References......Page 476
B9.3.1 Introduction......Page 480
B9.3.2 Bi(2223) phase formation......Page 481
(a) The powder precursors......Page 484
(c) The reaction temperature......Page 485
(d) Deformation-iinduced texture in Bi,Pb(2223) tapes......Page 486
B9.3.3.2 The fabrication of multifilamentary tapes......Page 487
B9.3.4 Critical current density in Bi,Pb(2223) tapes......Page 489
B9.3.4.1 Lateral Jc distribution in mono- and multifilamentary Bi,Pb(2223) tapes......Page 490
B9.3.4.2 Variation of JC(B) at 77 K for mono- and multifilamentary Bi,Pb(2223) tapes......Page 491
B9.3.4.3 Variation of Jc ( B ) for Bi,Pb(2223) tapes at 4.2 K......Page 493
B9.3.4.4 Reinforcement of Bi,Pb(2223) tapes by dispersion hardening......Page 494
B9.3.5.1 The microstructure of the filaments in Bi,Pb(2223) tapes......Page 495
B9.3.5.2 Current-limiting processes in Bi,Pb(2223) tapes......Page 496
B9.3.6 Conclusions......Page 499
References......Page 500
C1.0.2 Survey on field calculations......Page 502
C1.0.3 Solenoid magnets......Page 508
C1.0.4 Multipole magnets......Page 512
C1.0.5 Design criteri......Page 518
C1.0.6 Mechanical design......Page 519
Further reading......Page 523
C2.0.1 Wires and cables......Page 524
C2.0.2 Electrical insulation......Page 525
C2.0.3 Winding techniques......Page 529
C2.0.4 Interconnections......Page 532
C2.0.5 Impregnation......Page 535
References......Page 537
C3.0.1 Introduction......Page 538
C3.0.2.1 Minimum propagating zone......Page 539
(a) Measurement of the quench velocity......Page 542
(b) Estimate of the adiabatic quench velocity......Page 544
C3.0.3.2 Hot-spot temperature......Page 546
C3.0.3.3 Resistance......Page 547
C3.0.3.4 Voltage......Page 549
C3.0.3.5 Example......Page 550
C3.0.3.6 Numerical calculations......Page 552
C3.0.4.1 Quench detection......Page 553
(a) Protection by internal energy absorption......Page 554
(b) Protection by external dump resistors......Page 555
(c) Protection by inductive coupling......Page 556
(d) Protection by subdivision......Page 557
(e) Summary on the protection of a single magnet......Page 558
(a) Energy bypass......Page 559
(b) Heaters......Page 563
(c) Independent current circuits......Page 564
References......Page 565
Further reading......Page 566
C4.0.2 Quench propagation in CICCs......Page 567
C4.0.2.1 Maximum pressure and helium expulsion......Page 568
C4.0.2.2 Hot-spot temperature......Page 570
C4.0.2.3 Normal-zone propagation......Page 572
C4.0.2.4 Quench-back......Page 575
C4.0.2.5 Normal voltage......Page 576
C4.0.3 Numerical simulation......Page 577
C4.0.4.4 Quench propagation regimes......Page 578
Appendix B Case study 2—hot-spot temperature......Page 579
Appendix C Case study 3—quench propagation regimes......Page 580
References......Page 581
C5.0.1 Introduction......Page 583
C5.0.2 The radiation environment at the magnet location—operating conditions......Page 584
C5.0.3 Damage energy scaling—absorbed energy......Page 586
C5.0.4.1 Niobium-titanium......Page 591
C5.0.4.2 Niobium-tin......Page 594
C5.0.4.3 Other materials......Page 596
C5.0.4.4 Summary......Page 598
C5.0.5 Stabilizer materials......Page 599
C5.0.6 Insulators......Page 601
C5.0.7 Summary......Page 606
References......Page 607
D2.0.2 Dielectric properties......Page 611
D2.0.3 Dielectric strength......Page 612
D2.0.3.1 Gas breakdown......Page 613
D2.0.3.2 Liquid breakdown......Page 618
D2.0.3.3 Breakdown in supercritical fluid......Page 624
References......Page 626
Further reading......Page 627
D3.0.1 Introduction......Page 628
D3.0.2.1 The Joule-Thomson process......Page 629
D3.0.2.2 The Brayton process......Page 633
D3.0.2.3 The Claude process......Page 635
D3.0.2.4 The Stirling process......Page 640
D3.0.2.5 The Gifford—McMahon process......Page 645
D3.0.2.6 The Vuilleumier process......Page 646
D3.0.3.2 Work performing gas expansion......Page 648
D3.0.3.4 Isolation losses......Page 649
References......Page 650
D4.0.1.2 Bath, forced and conduction cooling (figure D4.0.3)......Page 651
D4.0.1.4 Hermetic and semi-open refrigerators......Page 653
D4.0.3.1 Classification of refrigerators......Page 654
(a) Brayton/Claude......Page 655
(c) Stirling......Page 656
D4.0.3.3 Neon as refrigerant......Page 657
D4.0.4 Cooldown versus continuous operation......Page 658
D4.0.5.1 Large magnet or cavity systems......Page 659
D4.0.5.5 MRI magnets with Gifford—McMahon shield coolers......Page 660
D4.0.7 Efficiency......Page 661
D4.0.8.1 The capacity of the plant......Page 662
D4.0.8.4 Standard plant versus tailor-made plant......Page 663
References......Page 664
D5.0.1 Introduction......Page 665
(b) Liquid-hydrogen level......Page 666
D5.0.2 Technical requirements for cryogenic plants......Page 667
(a) Compressors......Page 670
(b) Expanders......Page 674
(c) Cold compressors......Page 678
(d) Heat exchangers......Page 679
D5.0.3.1 Multipurpose helium refrigerator of medium capacity (Kneuer et al 1980)......Page 680
D5.0.3.2 A 10 l h-1 helium liquefier......Page 682
D5.0.3.3 A 2 W Gifford—McMahon refrigerator......Page 683
D5.0.3.4 A 300 W, 1.8 K refrigerator......Page 684
D5.0.3.5 A 400 W refrigerator......Page 685
(b) Turborefrigerator......Page 687
References......Page 689
D6.0.2 Thermodynamic considerations about cryocoolers......Page 690
D6.0.2.1 Theoretical reversible cycles......Page 691
(b) Stirling-type cryocooler......Page 693
D6.0.2.2 Joule—Thomson expansion......Page 695
D6.0.3.1 Piston motion......Page 697
D6.0.3.4 Nonisothermal operation......Page 698
D6.0.3.6 Thermal losses......Page 699
D6.0.4.1 Joule—Thomson expansion cryocoolers......Page 700
D6.0.4.2 Gifford-MacMahon cryocoolers......Page 702
D6.0.4.3 Compound Gifford—MacMahon and Joule—Thomson cryocoolers......Page 705
D6.0.4.4 Stirling cryocoolers......Page 706
D6.0.5.1 Magnetic materials for regenerators......Page 711
D6.0.5.3 Pulse-tube refrigerators......Page 712
Further reading......Page 715
D7.0.1 Introduction......Page 716
D7.0.2 The physical principles of magnetic refrigeration......Page 717
D7.0.3.1 Variable magnetic fields......Page 720
D7.0.3.2 Exchange of heat......Page 721
D7.0.4.1 Carnot-cycle refrigerators......Page 722
D7.0.4.2 Regenerative-cycle refrigerators......Page 725
D7.0.5 Working substances for magnetic refrigerators......Page 727
References......Page 729
D8.0.1.1 Cooling powers of different cryostats......Page 731
D8.0.2.1 Liquid-nitrogen-shielded cryostats for liquid helium......Page 732
D8.0.2.2 Vapour-shielded cryostats for liquid helium......Page 733
D8.0.2.4 Bath cryostats for liquid nitrogen......Page 734
D8.0.2.5 Large-scale bath cryostatsfor magnetic resonance imaging......Page 735
D8.0.3.2 Independent continuous-flow cryostats......Page 736
(a) Dynamic systems......Page 738
D8.0.3.4 Large-scale continuous-flow cryostats......Page 739
D8.0.3.6 ‘Stinger’ systems......Page 740
D8.0.3.7 Cryogen-free cryostats......Page 741
D8.0.4.1 Lambda point refrigerators......Page 742
(b) Sorption pumped 3He systems......Page 744
(d) 3He/4He dilution refrigerators......Page 746
(f) Nuclear demagnetization systems......Page 747
D8.0.5 Experimental access to cryostats......Page 749
(b) Electrical requirements......Page 750
(d) Heat sinking......Page 751
(g) Four-wire measurements......Page 752
(i) Wiring looms......Page 753
(a) Indium seals......Page 754
D8.0.7.2 Open-loop operation......Page 755
D8.0.7.5 Integral action......Page 756
D8.0.7.8 Gas-flow control......Page 757
(a) Basic requirements......Page 758
(e) If you are designing the system yourself......Page 759
D8.0.9.2 Setting up your laboratory......Page 760
Further reading......Page 761
D9.0.1 Boiling superfluid helium......Page 762
D9.0.2 Tλ bath (Roubeau’s type)......Page 763
D9.0.3 Baths for any needed temperature (Claudet type baths)......Page 764
D9.0.4 Control and operation of stratified HeII baths......Page 765
References......Page 767
D10.0.1 Introduction......Page 768
D10.0.2.2 Cooling of current leads......Page 769
D10.0.2.3 Conductor materials......Page 770
(a) Critical current in some superconducting materials......Page 771
D10.0.3.1 Computer calculations......Page 772
D10.0.3.2 A vapour-cooled current lead for liquid-helium applications......Page 774
(a) Low-temperature superconductors for the low-temperature end of a 4 K lead......Page 776
D10.0.3.3 Current leads for liquid-nitrogen applications......Page 777
D10.0.3.4 Examples of all-metal d.c. leads......Page 779
D10.0.3.5 All-metal a.c. current leads......Page 780
D10.0.4.1 The operation principle of hybrid metallic—high-temperature superconductor current leads......Page 782
D10.0.4.2 High-temperature superconductor current leads without heat generation......Page 784
Operation principle......Page 787
Temperature profiles......Page 788
(b) A.c. losses......Page 790
General E(J) model......Page 791
(c) Losses in contacts......Page 793
(a) Expected performance for different design options......Page 795
(c)Test results of the d.c. lead......Page 796
D10.0.5.2 Example of a hybrid d.c. lead with a 50 K helium-vapour heat sink......Page 798
(b) A.c. lead design......Page 801
(c) Material options for the 5 kA rms a.c. lead......Page 803
(d) Test results of a.c. leads......Page 805
D10.0.6 Perspectives for hybrid metal—high-temperature superconductor current leads......Page 808
References......Page 809
D11.1.1 Introduction......Page 811
D11.1.2 Subcooled liquids and supercritical fluids......Page 814
D11.1.2.1 Pressure drop......Page 815
(c) Impact of the surface roughness......Page 816
(d) Pressure drop in curved pipes......Page 817
(f) Pressure drop in CICCs......Page 819
D11.1.2.2 Heat transfer in forced-flow systems......Page 820
(a) Forced flow steady-state heat transfer......Page 821
D11.1.3 Forced two-phase flow......Page 822
D11.1.3.1 Pressure drop in two-phase flow......Page 823
D11.1.3.2 Heat transfer in two-phase flow......Page 826
D11.1.4.1 Transient heat transfer......Page 827
D11.1.4.3 Examples for forced flow problems......Page 829
References......Page 831
D11.2.2 Helium circulation by warm compressors......Page 833
D11.2.3 Coolant loop with cold circulator......Page 834
D11.2.4 A coolant loop with a thermomechanical pump......Page 835
References......Page 839
D12.0.1 Introduction......Page 840
D12.0.2 Safety legislation and codes of practice......Page 842
D12.0.3.2 Oxygen deficiency......Page 843
D12.0.3.4 Storage and handling of cryogens......Page 844
D12.0.4 Pressure hazard......Page 845
D12.0.5.2 Oxygen hazard......Page 846
D12.0.5.3 Air liquefaction hazard......Page 847
D12.0.6.1 Materials and design......Page 848
D12.0.6.2 Metals......Page 849
D12.0.6.5 Equipment and storage vessels......Page 850
References......Page 852
Addresses......Page 853
E1.0.2 Float sensors......Page 854
E1.0.3 Vibrating membranes......Page 855
E1.0.5 Weight......Page 856
E1.0.8 Capacitance......Page 857
E1.0.10 Conclusion......Page 858
Further reading......Page 859
E2.0.1 Fundamentals of flow measurement......Page 860
E2.0.2 Differential pressure flowmeters......Page 862
E2. 0.2.1 Orifice flowmeters......Page 863
E2.0.3 Variable-area flowmeters......Page 864
E2.0.5 Thermal mass flowmeters......Page 865
E2.0.6 Turbine flowmeters......Page 867
E2.0.8 Target flowmeters......Page 868
E2.0.10 Summary......Page 869
References......Page 870
E3.0.1.1 A transducer at ambient temperature......Page 871
E3.0.1.2 A transducer at cryogenic temperatures......Page 872
Capacitive transducers......Page 873
Inductive (Validyne type) transducers......Page 874
Piezoelectric transducers......Page 875
Piezoresistive transducers......Page 876
Fibre-optic transducers......Page 877
References......Page 878
E4.0.1.2 Empirical temperature......Page 880
E4.0.1.3 International temperature scales......Page 882
E4.0.2 Reference points for thermometry......Page 883
E4.0.2.1 Ideal substances versus standard reference materials......Page 885
(a) Realization of the triple point of gases as thermometric fixed points......Page 886
(b) Reference points based on superconducting transitions......Page 888
(c) The 4He liquid to superfluid liquid transition and solid to solid transitions......Page 889
E4.0.2.3 The ITS-90 between 13.80 K and 273.16 K, and scale approximations using only sealed fixed points......Page 890
E4.0.3 Gas thermometry below 273.16 K......Page 891
E4.0.3.1 Gas thermometers with a built-in cryogenic pressure-measuring device......Page 893
E4.0.3.3 Gas thermometer realizations......Page 895
E4.0.4 Vapour-pressure thermometry......Page 896
E4.0.4.2 The influence of technical parameters......Page 899
E4.0.4.3 The realization of vapour-pressure temperature scales......Page 900
E4.0.5 Electrical thermometers and their use......Page 901
E4.0.5.1 The choice of cryogenic thermometers......Page 902
E4.0.5.2 Thermometer mounting......Page 906
E4.0.6 Future trends in thermometry......Page 908
References......Page 910
E5.0.1 Introduction......Page 912
E5.0.2.2 The fluxmeter method......Page 913
Induction coils......Page 914
The flux measurement......Page 916
Theory of the Hall effect......Page 917
Hall probe measurement......Page 918
Calibration......Page 919
E5.0.2.4 Magnetic resonance techniques......Page 920
E5.0.2.5 Flux-gate magnetometer......Page 922
Floating wire method......Page 923
References......Page 924
F1.1.2 Deformation mechanism maps......Page 927
F1.1.3 Some fundamental properties of dislocations......Page 929
F1.1.4 The temperature sensitivity of the flow stress......Page 931
F1.1.5.1 A tensile cryostat for temperatures between 293 and 5 K......Page 934
F1.1.5.2 Fundamentals of data acquisition......Page 937
F1.1.5.3 Measurement of strain......Page 938
F1.1.6.1 The effect of temperature on the yield and flow......Page 939
F1.1.6.2 Serrated stress-strain curves......Page 942
(a) Thermal instability of plastic flow......Page 943
(b) Dislocation (athermal) instability of plastic flow......Page 944
(c) The low-temperature plastic instability—a coupled two-stage process......Page 945
F1.1.7 Dynamical dislocation pile-ups—an electronic response......Page 946
F1.1.9 Effect of plastic instabilities on failure......Page 948
F1.1.10 Fracture-control design planning......Page 949
References......Page 950
Further reading......Page 951
F1.2.2 Stress—strain measurements at cryogenic temperatures and related problems......Page 952
F1.2.2.2 Signal conditioning, data acquisition and evaluation......Page 953
F1.2.3.1 Material AISI 316LN (Werkstoff No 1.4429)......Page 955
F1.2.3.2 Material SUS 316 (~AISI 316)......Page 957
F1.2.3.3 Material ~AISI 321 (Werkstoff No 1.4541)......Page 959
F1.2.3.4 Material SUS JN1......Page 960
F1.2.4 The strength—toughness relationship......Page 962
Further reading......Page 963
F2.0.1 Introduction......Page 964
F2.0.2 Applications of fibre composites......Page 965
F2.0.2.2 Support elements......Page 966
F2.0.3 Fibres......Page 967
F2.0.4 Polymer matrix......Page 970
F2.0.5 Manufacturing of composites......Page 971
F2.0.6 Fibre arrangement and properties......Page 972
F2.0.6.1 Typical results from laminate analysis......Page 974
F2.0.7.1 Survey......Page 976
(a) Temperature dependences......Page 978
(a) Unidirectional composites......Page 979
(b) Carbon crossplies (0°, 90° lay up) at 77 K......Page 980
(d) Tensile loading of carbon ±45 ° plies......Page 981
(b) Shear loading of carbon ±45 ° plies......Page 982
F2.0.7.3 Ceramic composites......Page 983
F2.0.7.4 Interlaminar shear strength......Page 984
F2.0.7.5 Multi-axial loading......Page 986
F2.0.8 Fatigue behaviour......Page 987
(a) Tensile threshold cycling on UD-composites in the fibre direction......Page 988
(b) Shear threshold cycling (torsion) on UD carbon fibre (tubes with 90° fibre arrangement)......Page 990
(c) Tensile threshold fatigue on carbon fibre crossplies (0°, 90° lay up)......Page 991
(d) Shear threshold fatigue on carbon fibre cross plies (0°, 90°)......Page 992
F2.0.8.2 Glass fibre composites......Page 993
(a) Tensile threshold fatigue on ceramic fibre UD composites......Page 994
(c) Degradation of moduli of ceramic composites......Page 996
F2.0.9 Thermal expansion......Page 997
(a) Parameters that influence thermal expansion......Page 1001
(a) Carbon fibre composites......Page 1004
(b) Influence of fibre arrangement and fibre type......Page 1005
F2.0.11 Specific heat......Page 1007
(a) Temperature dependence......Page 1008
(b) Thermal diffusivity......Page 1009
F2.0.12 Dielectric properties and breakdown voltage......Page 1011
F2.0.13 Gas permeability......Page 1013
(a) Degradation of mechanical properties......Page 1016
References......Page 1019
Further reading......Page 1022
F3.0.2.1 Temperature dependence of the resistivity......Page 1023
F3.0.2.3 Crystallographic phase transitions......Page 1025
F3.0.2.5 Size effect......Page 1026
F3.0.2.6 Defect-induced resistivity (stress, fatigue)......Page 1028
F3.0.3 Measurement of resistivity......Page 1030
Appendix A Resistivity of pure metals......Page 1031
Appendix B Resistivity of alloys......Page 1033
Appendix C Magnetoresistivity......Page 1036
References......Page 1037
F4.0.2 Conduction heat flow......Page 1039
F4.0.3.1 Metals......Page 1040
F4.0.3.2 Nonmetallic materials......Page 1042
F4.0.3.3 Superconductors......Page 1043
F4.0.4 Measurement of the thermal conductivity......Page 1044
Appendix A Metals and alloys......Page 1045
References......Page 1048
Further reading......Page 1049
F5.0.2.1 Lattice specific heat......Page 1050
F5.0.2.2 Electronic specific heat......Page 1051
F5.0.2.3 Superconductors......Page 1052
F5.0.3 Experimental methods......Page 1053
F5.0.4.1 Behaviour of nonsuperconducting materials......Page 1055
F5.0.4.2 Superconducting metals......Page 1056
F5.0.4.3 High-Tc superconductors......Page 1058
F5.0.5 Data sources......Page 1059
References......Page 1060
Further reading......Page 1061
F6.0.1 Introduction......Page 1062
F6.0.2 Theory......Page 1063
F6.0.4.1 General......Page 1065
F6.0.4.2 Nonsuperconducting metals......Page 1067
F6.0.4.3 Nonmetallic solids (nonsuperconductors)......Page 1069
F6.0.4.4 Superconducting metals......Page 1070
F6.0.5 Data sources......Page 1071
Reading list......Page 1073
F7.0.2 Intrinsic properties......Page 1075
F7.0.2.1 Resistivity......Page 1076
F7.0.2.2 Permittivity and dielectric losses......Page 1077
F7.0.2.3 Dielectric strength......Page 1080
F7.0.3.1 Dielectric strength......Page 1081
F7.0.3.2 Interface phenomena......Page 1088
References......Page 1090
F8.0.2 General characteristics of thermopower (Seebeck coefficient)......Page 1092
F8.0.3.1 Conventional, A15 and Chevrel-phase superconductors......Page 1094
F8.0.3.3 Organic and heavy-fermion superconductors......Page 1096
F8.0.3.4 Perovskite high-temperature superconductors......Page 1097
F8.0.5.1 Introduction......Page 1100
F8.0.5.2 The Ettingshausen effect......Page 1104
F8.0.5.3 The Peltier effect......Page 1105
F8.0.5.5 The Nernst effect......Page 1106
F8.0.5.6 The Seebeck effect (magnetothermopower)......Page 1109
F8.0.6.1 Determination of absolute thermoelectric power......Page 1111
F8.0.6.2 Thermoelectric coolers......Page 1113
F8.0.7 Conclusion......Page 1115
References......Page 1116
PART G PRESENT APPLICATIONS OF SUPERCONDUCTIVITY......Page 1118
G1.0.1 Introduction......Page 1119
G1.0.2 Scope......Page 1121
(a) Asymmetric split pairs......Page 1122
G1.0.3.1 Simple solenoids......Page 1123
G1.0.3.3 Homogeneity......Page 1125
G1.0.3.5 Stored energy......Page 1126
G1.0.4 Practical magnets......Page 1128
G1.0.4.1 Winding......Page 1129
G1.0.4.2 Impregnation......Page 1131
G1.0.4.5 Interfaces......Page 1132
G1.0.4.6 Shims......Page 1133
G1.0.4.7 Flux jumping......Page 1135
G1.0.4.9 Current leads......Page 1136
G1.0.5.1 Initial testing......Page 1137
G1.0.5.4 Modulation coils......Page 1139
G1.0.6.3 Chevrel phase......Page 1140
References......Page 1141
G2.1.1 Introduction......Page 1142
G2.1.2 General aspects of superconducting NMR magnets......Page 1143
G2.1.3 Construction of a superconducting NMR magnet......Page 1146
G2.1.3.1 The electrical circuit......Page 1147
G2.1.3.2 The cryostat......Page 1149
G2.1.3.3 Superconducting wire......Page 1152
G2.1.3.4 The main coil......Page 1154
G2.1.3.6 The superconducting shim system......Page 1156
G2.1.3.8 A superconducting switch......Page 1160
G2.1.3.9 Dump resistors......Page 1161
G2.1.4 Future NMR magnets......Page 1162
Further reading......Page 1163
G2.2.1 Introduction......Page 1164
(a) NMR spectroscopy......Page 1165
G2.2.2.2 Detection of the NMR signal......Page 1167
G2.2.2.3 Imaging......Page 1168
G2.2.2.4 Standard MRI applications......Page 1170
(a) Spin — echo sequence......Page 1171
(b) MR angiography......Page 1172
G2.2.3.1 Technical equipment......Page 1173
G2.2.3.2 Actively shielded gradients......Page 1174
G2.2.4.1 Basic concepts for superconducting NMR magnets......Page 1176
G2.2.4.2 Superconducting MRI magnets......Page 1179
G2.2.4.3 Superconducting wire......Page 1183
G2.2.4.4 Cryostat concepts......Page 1184
(a) Echo planar imaging (EPI)......Page 1188
G2.2.5.2 Requirements for the magnets......Page 1189
G2.2.5.3 High-temperature superconductors and MRI......Page 1191
G2.2.6.1 Installation planning......Page 1193
G2.2.6.2 Marketing aspects......Page 1194
G2.2.6.3 Magnet alternatives......Page 1195
G2.2.7 Summary......Page 1197
References......Page 1198
Further reading......Page 1199
G2.3.3 Magnetometers and gradiometers......Page 1200
G2.3.5.1 Gradiometer arrangements......Page 1202
G2.3.5.2 Shielded environment versus unshielded environment......Page 1203
G2.3.5.3 International system developments......Page 1204
G2.3.6.1 The inverse problem......Page 1205
G2.3.6.2 Dipole localizations......Page 1206
G2.3.6.5 Overlay with morphology......Page 1207
G2.3.7 Biomagnetic measurements......Page 1209
References......Page 1210
G3.0.2.1 Why fusion?......Page 1212
G3.0.2.2 The way to fusion......Page 1213
(a) Tokamaks......Page 1214
(b) Stellarators......Page 1215
G3.0.3 Superconducting Tokamaks......Page 1216
G3.0.3.2 Triam......Page 1217
G3.0.3.3 T15......Page 1219
(a) Conductor......Page 1220
(a) Presentation of the Tokamak......Page 1221
(b) The conductor......Page 1222
(c) The toroidal field system......Page 1223
(d) Normal operation and protection......Page 1224
(e) Status after eight years of operating experience......Page 1225
G3.0.4.1 Superconductivity, an obligatory path for future Tokamaks......Page 1226
(a) Nb3Sn or Nb - Ti......Page 1227
(b) The toroidal field system......Page 1229
(c) The central solenoid......Page 1230
(d) Conductor......Page 1231
(e) Strand......Page 1234
References......Page 1238
G4.0.1 Introduction......Page 1239
G4.0.2 Motivation for the use of superconducting magnets. Advantages in terms of cost, space and energy consumption......Page 1240
G4.0.3 Special features of superconducting magnets for particle accelerators......Page 1241
G4.0.4 Dipoles and quadrupoles: their importance and development......Page 1242
G4.0.5 Categories of superconducting magnets for accelerators......Page 1243
G4.0.6 Superconductors......Page 1244
G4.0.8.1 Definition of multipole field components......Page 1252
(a) Conductor placement errors......Page 1253
(g) Curvature......Page 1254
G4.0.9.1 Some facts......Page 1255
G4.0.9.2 ‘Roman arch’ concept for mechanical stability......Page 1257
G4.0.9.3 Force-containment structures......Page 1259
G4.0.10.1 General......Page 1261
(a) Main dipoles......Page 1262
G4.0.10.3 Cryogenics......Page 1263
References......Page 1265
G5.0.2 Some basic expressions......Page 1268
G5.0.3 Storage rings......Page 1270
G5.0.4 Scaling laws......Page 1272
G5.0.5 Superconducting magnets: some basic design choices......Page 1276
(a) Helios......Page 1279
(b) Super ALIS......Page 1286
(c) Aurora......Page 1288
(d) Mitsubishi......Page 1290
(e) NIJI - III......Page 1291
( f ) Diamond and SLS......Page 1292
References......Page 1293
G6.0.1 Introduction......Page 1294
G6.0.2 High-gradient magnetic separation......Page 1295
G6.0.2.1 Theory of high-gradient magnetic separation......Page 1297
G6.0.3.1 Superconducting magnetic separators which switch on and off......Page 1301
G6.0.3.3 Improved superconducting machines which switch on and off......Page 1303
G6.0.3.4 Reciprocating canister superconducting magnetic separators......Page 1305
G6.0.3.5 Superconducting rotating drum magnetic separator......Page 1307
G6.0.3.6 Summary of the situation for low-Tc superconducting magnetic separators......Page 1308
G6.0.4.1 Introduction to high-Tc superconductors......Page 1309
G6.0.4.3 The superconducting flux tube and discs......Page 1310
(a) Flux trapping followed by flux compression......Page 1311
(c) Charging the flux tube with a flux pump......Page 1312
(d) A super conducting reciprocation canister separator with a flux tube......Page 1313
(a) The magnetic circuit......Page 1314
(c) The ball matrix separator......Page 1315
(d) Ferromagnetic stainless steel wire matrix......Page 1316
G6.0.6 Conclusions......Page 1317
References......Page 1318
G7.0.1 Introduction......Page 1320
G7.0.2.2 The cryogenic efficiency......Page 1321
G7.0.2.3 Lower impedance of superconducting cavities......Page 1322
G7.0.3.1 The operating frequency......Page 1323
G7.0.3.3 Design of end cells......Page 1324
G7.0.3.4 Shaping, welding and surface processing......Page 1325
G7.0.4.1 The anomalous skin effect......Page 1326
G7.0.4.2 The surface impedance of superconductors......Page 1327
G7.0.5 The critical field of superconductors—RF case......Page 1330
G7.0.6 Discrepancies between theory and experiment—anomalous losses......Page 1331
G7.0.6.1 The residual surface resistance......Page 1334
G7.0.6.2 Surface defects of localized enhanced losses......Page 1335
G7.0.6.3 Field emission electron loading......Page 1337
G7.0.8.1 Coupling RF power into the cavity......Page 1339
The beam - induced RF power......Page 1342
Damping the beam - induced RF power......Page 1343
G7.0.9 Tuning superconducting cavities......Page 1344
G7.0.10 Special features of heavy-ion resonators......Page 1345
G7.0.11 Technological achievements for accelerating cavities......Page 1347
G7.0.12 Conclusion and outlook......Page 1348
References......Page 1350
Further reading......Page 1354
G8.0.1.2 The merits of the superconducting Maglev......Page 1356
G8.0.2.1 Principle......Page 1357
(b) Levitation......Page 1358
(c) Guidance......Page 1359
G8.0.2.2 Constitution of the levitation system......Page 1360
G8.0.3.1 The early stage of development......Page 1361
G8.0.3.2 Miyazaki test track and ML-500......Page 1362
G8.0.3.3 MLU001......Page 1363
G8.0.4.1 The requirements for a superconducting magnet for the Maglev......Page 1366
G8.0.4.2 The structure of the superconducting magnet......Page 1367
(c) Power lead......Page 1368
(f) Outer vessel and radiation shield plate......Page 1369
(a) The aim of an on - board refrigeration system......Page 1370
(b) Constitution of the refrigeration system......Page 1371
G8.0.5 Power supply system for the Maglev......Page 1373
(e) Power converter......Page 1374
G8.0.5.2 LSM propulsion control system......Page 1375
G8.0.5.3 Power feeding control system......Page 1376
(a) Noncirculating - current - type cycloconverter......Page 1377
(b) Circulating - current - type cycloconverter......Page 1378
(c) PWM inverter......Page 1379
G8.0.5.5 Propulsion coil......Page 1380
G8.0.6 The basic characteristics of the running of the Maglev......Page 1382
G8.0.7.1 Construction of a new Maglev test line......Page 1384
G8.0.7.2 Configuration of new Maglev trains......Page 1385
G8.0.7.4 Power supply system......Page 1387
G8.0.7.5 Structure of the guideway......Page 1388
Further reading......Page 1389
G9.0.2 General principles......Page 1390
(b) Critical currents and flux pinning......Page 1391
(c) Levitation force......Page 1393
(b) Stiffness......Page 1394
(d) Dynamic loading and vibrations......Page 1395
(e) Vibration model......Page 1397
G9.0.3 Bearing configurations......Page 1398
(a) ‘Monopole’ magnet to superconductor......Page 1399
(b) Superconductor to superconductor......Page 1400
(c) Eddy current......Page 1401
(f) Hybrid superconducting magnetic bearing (HSMB)......Page 1402
(a) Electromagnetic bearing......Page 1403
(a) ISTEC......Page 1404
(b) Houston......Page 1405
G9.0.4.1 Passive devices......Page 1406
References......Page 1408
G10.0.1.1 Magnetostatics and attenuation factors for different geometry types......Page 1410
G10.0.1.2 Shielding factors in alternating fields......Page 1413
G10.0.2 Shielding with diamagnetic materials......Page 1415
G10.0.2.1 Type I superconductors......Page 1416
G10.0.2.2 Type II superconductors......Page 1417
G10.0.2.3 Shielding with low-Tc superconducting materials......Page 1419
G10.0.2.4 Shielding with high-Tc superconducting materials......Page 1420
G10.0.2.5 Approaching zero magnetic field......Page 1424
G10.0.4 Measuring the shielding factor......Page 1425
G10.0.5 Shielded enclosures and rooms for vanishing fields: present and future......Page 1427
References......Page 1430
PART H POWER APPLICATIONS OF SUPERCONDUCTIVITY......Page 1433
H1.0.2 Synchronous machines......Page 1434
H1.0.5 Power transmission......Page 1436
H1.0.7 Energy storage......Page 1437
H1.0.8 Superconductivity, associated technologies and some economics......Page 1438
Further reading......Page 1442
H2.1.2 Introduction......Page 1443
H2.1.3.1 D.c. applications in a.c. rotating machinery......Page 1445
(b) Candidate materials and their performance......Page 1446
H2.1.4.1 Stator winding and stator core......Page 1449
H2.1.4.2 Rotor windings......Page 1456
(a) Damper winding......Page 1458
H2.1.4.3 Reactances......Page 1460
H2.1.5 Cryoengineering of a.c. rotating machinery, mechanical design of key components and optimization of mechanical and thermo-technical design......Page 1464
H2.1.5.1 Thermo-technical design of key components......Page 1472
H2.1.6 Electrical characteristics and regular operation including a comparison with conventional a.c. rotating machinery......Page 1476
H2.1.6.1 Faults and transient operation including comparison with ordinary a.c. rotating machinery......Page 1477
H2.1.6.2 A review of operating experience......Page 1484
H2.1.7 Economic aspects......Page 1486
References......Page 1488
Further reading......Page 1489
H2.2.2 Superconducting drive motor......Page 1494
H2.2.3 Superconducting torquer......Page 1497
Further reading......Page 1498
H3.0.1 Introduction......Page 1499
H3.0.2 The basic homopolar machine......Page 1501
H3.0.3 The basic superconducting homopolar machine......Page 1503
(b) Calculation of back emf......Page 1505
(d) Discussion of the integral B (r)r dr......Page 1506
(e) Design optimization......Page 1507
H3.0.5 The superconducting excitation winding......Page 1509
H3.0.6 The cryostat and liquefaction system......Page 1514
H3.0.7 Current collection......Page 1516
H3.0.8 The armature......Page 1518
H3.0.10 Electromagnetic stresses......Page 1522
H3.0.11 Stray magnetic field......Page 1525
(a) Heat in - leak down the current leads......Page 1527
H3.0.13 Direct current generators......Page 1529
H3.0.14 The use of high-temperature superconductors......Page 1530
Appendix A The integral ∫蹌(r)rdr......Page 1531
Further reading......Page 1532
H4.0.2.1 Reduction of losses......Page 1533
H4.0.2.2 Ampere turns—iron core reduction......Page 1534
H4.0.2.4 Specific constraints......Page 1535
(a) Fully superconducting transformer......Page 1536
(a) Analysis of a transformer without an iron core......Page 1537
(b) A toroidal transformer without an iron core (TTSF)......Page 1538
H4.0.5 Interest in high-critical-temperature superconductors......Page 1543
H4.0.6 Conclusion......Page 1545
Further reading......Page 1546
H5.0.1 Introduction......Page 1547
H5.0.2 Main constraints and benefits......Page 1548
H5.0.2.2 Benefits......Page 1550
H5.0.2.3 Superconducting cable components......Page 1551
(a) Conductors for a.c. cables......Page 1553
Losses......Page 1554
Mechanical restrictions......Page 1557
Segmented conductors......Page 1558
Corrugated conductors......Page 1560
(b) Electrical insulation of a.c. cores......Page 1563
(c) Design and performance of a.c. cores......Page 1569
Power density......Page 1570
Utility system integration......Page 1571
Operation of a.c. cores......Page 1572
(a) Conductors for d.c.......Page 1574
(b) Electrical insulation for d.c. cores......Page 1575
(c) Design and operation of d.c. cores......Page 1576
H5.0.4 Cryogenic envelope......Page 1577
H5.0.4.1 Performance of heat shielding......Page 1578
H5.0.4.2 Operation......Page 1580
H5.0.5 Terminations and joints......Page 1581
H5.0.5.1 Cable terminations......Page 1582
(a) High voltage current lead......Page 1583
(b) High - voltage insulation......Page 1584
(d) Coolant feeders......Page 1586
(f) Performance......Page 1587
H5.0.5.2 Joints......Page 1588
H5.0.6 Refrigeration......Page 1589
H5.0.7.2 Outdoor test facilities......Page 1593
H5.0.8.1 Economics......Page 1598
H5.0.8.2 Acceptance......Page 1603
H5.0.9 Prospects of novel cable designs......Page 1604
H5.0.9.2 Electrical insulation......Page 1605
References......Page 1607
Further reading......Page 1609
H6.0.1 Fault current limiters: why?......Page 1610
H6.0.2 Fault current limiters: why superconducting?......Page 1611
H6.0.4 Typical specification......Page 1612
H6.0.5 The saturated iron core concept......Page 1613
H6.0.6.2 Conductor dimensions......Page 1614
H6.0.6.3 Shunt impedance......Page 1615
H6.0.6.5 Protection......Page 1616
H6.0.7.1 Definition......Page 1617
H6.0.7.2 A mixed transformer......Page 1618
H6.0.7.4 Other variants......Page 1619
Further reading......Page 1620
H7.1.1 SMES in comparison to other energy storage......Page 1622
H7.1.2 Aspects for the design of small, fast-acting SMES systems......Page 1623
H7.1.3 Design of small, fast-acting SMES plants......Page 1624
H7.1.3.2 Basic SMES types......Page 1625
H7.1.3.3 Optimum coil design......Page 1626
(a) Solenoids......Page 1627
(b) Toroids......Page 1628
(a) Threshold values for humans in electromagnetic fields......Page 1629
(b) Magnetic shielding......Page 1630
H7.1.4 Operation of SMES systems......Page 1631
H7.1.4.2 Connection to the grid with a flux pump......Page 1632
H7.1.4.3 Converter connections......Page 1633
H7.1.5.1 Concept......Page 1635
H7.1.5.3 Countermeasures......Page 1636
H7.1.6 Characteristic data of SMES systems......Page 1638
H7.1.7.4 Example: load noise levelling in a single-phase network......Page 1639
H7.1.7.5 Example: balancing asymmetric fast transient voltage drops......Page 1641
H7.1.8 An overview of SMES projects......Page 1642
(a) Overview......Page 1643
(c) SSD of Superconductivity Inc.......Page 1644
(d) Project of B&W and ML&P......Page 1645
H7.1.9 The Munich Pilot Plant......Page 1646
H7.1.10 Critical evaluation and prospects......Page 1651
References......Page 1652
Further reading......Page 1653
H7.2.1 Introduction......Page 1654
H7.2.2 Modelling......Page 1657
H7.2.3.1 Dimensioning of SMES......Page 1658
H7.2.3.2 Location of SMES......Page 1661
H7.2.3.3 SMES control scheme......Page 1664
(a) Synthesis of the SMES controller II......Page 1665
(b) Synthesis of the SMES controller I by means of pole placement......Page 1666
H7.2.4 Conclusions......Page 1672
References......Page 1674
PART I SUPERCONDUCTING ELECTRONICS......Page 1676
I1.0.1 The Josephson effect......Page 1677
I1.0.2 The Josephson tunnel junction......Page 1679
I1.0.3 The RSJ model......Page 1680
I1.0.4 High-frequency response......Page 1682
I1.0.5 Magnetic field response of Josephson junctions......Page 1684
I1.0.6.1 Low-Tc Josephson junctions......Page 1687
I1.0.6.2 High-Tc junctions......Page 1689
References......Page 1692
Further reading......Page 1693
I2.0.1 Introduction......Page 1694
I2.0.2.2 D.c. SQUIDs......Page 1695
I2.0.2.3 RF SQUIDs......Page 1698
I2.0.2.4 Other SQUID configurations......Page 1699
I2.0.3 Realization of SQUIDs......Page 1700
I2.0.3.1 Low-Tc d.c. SQUIDs......Page 1701
I2.0.3.3 Low-Tc RF SQUID......Page 1703
I2.0.4 Application of SQUIDs......Page 1705
I2.0.4.2 Nondestructive evaluation......Page 1707
I2.0.4.3 Geophysics......Page 1708
References......Page 1710
I3.0.2 Equivalent circuits......Page 1712
I3.0.3 Parallel arrays of junctions......Page 1713
I3.0.4 Fluxon oscillation and spatial distribution......Page 1714
I3.0.5 Vortex transitions in threshold curves......Page 1716
I3.0.6 Josephson sampling system......Page 1718
I3.0.7 Single-fluxon propagation......Page 1721
I3.0.8 Fluxon-antifluxon collisions......Page 1723
I3.0.9 Logic circuits......Page 1725
I3.0.10 Superconducting neural networks......Page 1727
References......Page 1728
14.0.1.1 Development of standard cells and electronic standards......Page 1730
14.0.1.2 Introduction of quantum standards......Page 1731
14.0.2.1 Josephson effects......Page 1733
14.0.2.2 Single junction standards......Page 1736
(a) Single junction parameters......Page 1737
(b) Microwave circuit......Page 1739
I4.0.3 Fabrication of Josephson series arrays......Page 1742
I4.0.4 Precision measurements and standard calibration......Page 1743
I4.0.5.3 High-Tc superconductors......Page 1746
References......Page 1747
I5.1.2 Microwave characteristics of superconductors......Page 1752
I5.1.2.1 Surface impedance......Page 1753
I5.1.2.2 Kinetic inductance......Page 1755
I5.1.2.3 Characteristics of superconducting planar waveguides......Page 1756
I5.1.3 Planar waveguide transmission line applications......Page 1759
(b) Tapped delay lines......Page 1760
I5.1.3.2 Interconnections......Page 1762
Gas - filled cavities......Page 1764
(b) Dielectric cavities......Page 1765
I5.1.5 Resonator-based oscillators......Page 1766
I5.1.6.2 Planar resonator filters......Page 1770
(a) Frequency response at low power......Page 1771
(b) Power response......Page 1772
I5.1.7 Conclusion......Page 1774
References......Page 1775
I5.2.2 Some ADC basics......Page 1777
I5.2.3 Oversampling of converters......Page 1780
I5.2.4 The comparator......Page 1782
I5.2.5 Comparator dynamics......Page 1783
I5.2.6 Thermal noise and flux flow......Page 1786
I5.2.7.1 Counting converters......Page 1787
I5.2.7.2 Flash converters......Page 1788
I5.2.7.3 Oversampling converters......Page 1789
References......Page 1790
I6.1.2.1 Introduction......Page 1792
I6.1.2.2 Bolometers......Page 1793
(a) Transition - edge microbolometers......Page 1799
Detectors......Page 1800
I6.1.2.4 Detectors with a superconducting inductance thermometer......Page 1801
I6.1.2.5 Detectors with a Josephson junction thermometer......Page 1802
I6.1.3.2 Feed networks of array antennas......Page 1803
I6.1.3.3 Beam-forming networks......Page 1804
(a) Radiative efficiency......Page 1805
(c) Characteristics of small antennas......Page 1807
(d) Superdirective array antennas......Page 1809
I6.1.3.5 Antennas for nuclear magnetic resonance instruments......Page 1811
(b) Low - field MRI......Page 1812
I6.1.4 Conclusion......Page 1813
References......Page 1814
I6.2.1 Introduction......Page 1816
I6.2.2 Theory of mixing for SIS mixers......Page 1817
I6.2.3 SIS junctions and integrated tuning circuitry......Page 1820
I6.2.4.1 Junction fabrication......Page 1822
I6.2.4.2 Mixer mount......Page 1823
I6.2.5 Experimental results......Page 1824
I6.2.6 High-Tc superconducting mixers......Page 1826
References......Page 1827
Glossary......Page 1830