Hamilton-Jacobi Equation: A Global Approach

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Benton
Series: Mathematics in Science & Engineering
Publisher: Academic Press
Year: 1977

Language: English
Pages: 161

Front Cover......Page 1
The Hamilton–Jacobi Equation: A Global Approach......Page 4
Copyright Page......Page 5
Contents......Page 8
Preface......Page 10
Acknowledgments......Page 12
Introduction......Page 14
Prefatory Remarks......Page 16
1. Exact Equations and Direct Integration......Page 17
2. The General Solution......Page 19
3. Separation of Variables......Page 21
4. Characteristics and Integral Surfaces......Page 24
5. The Complete Integral......Page 26
6. The Cauchy-Kowaleski Theorem......Page 31
7. The Legendre Transform......Page 34
8. Characteristic Theory......Page 36
9. Elementary Transformations......Page 43
10. Variational Methods......Page 49
11. Hamilton–Jacobi Theory......Page 52
12. Contact Transformations......Page 56
13. Similarity Methods......Page 58
1. Global Solutions......Page 64
2. The Compatibility Condition......Page 68
3. The Variational Solution......Page 72
4. Growth Conditions......Page 74
5. Regularity......Page 77
6. Space–Time Independent Hamiltonians......Page 81
7. Space–Time Dependence......Page 84
8. Equivalent Problems......Page 88
9. A Little u Dependence?......Page 90
10. Other Existence Techniques......Page 94
Preamble......Page 98
1. Basic Inequalities......Page 99
2. Uniqueness for the Cauchy Problem......Page 110
3. Uniqueness for More General Boundaries......Page 115
4. Maximality of the Variational Solution......Page 118
General Comments......Page 124
1. Some Physical Applications......Page 125
2. Applications in the Calculus of Variations and Control Theory......Page 126
3. Minimization of a Function......Page 128
4. Quasilinear Equations......Page 131
5. Numerical Methods for the Calculus of Variations......Page 133
6. Numerical Methods for First-Order Equations......Page 139
7. Artificial Viscosity......Page 142
Bibliography......Page 146
Index......Page 158