Hall polynomials for classical groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Franklin Miller Maley
Series: PhD thesis at Princeton University
Year: 1996

Language: English

Abstract .................................................................................................... iii
1: Ordinary Hall Polynomials ............................................................. 1
1.1: Background ................................................................................. 1
1.2: The category of p a irs.................................................................4
1.3: Reduction to F-polynomials ..................................................... 8
1.4: A new formula for F-polynomials ........................................... 10
2: Symplectic and Orthogonal Groups ............................................... 16
2.1: Definition of Hall functions ................................................... 16
2.2: Unipotents versus nilpotents ................................................... 21
2.3: Nilpotent conjugacy classes ................................................... 23
2.4: The Springer-Steinberg basis ................................................... 26
3: Computing General Hall Polynomials ........................................... 30
3.1: Overview of the calculation ................................................... 30
3.2: Action of the centralizer ........................................................... 32
3.3: Details of the calculation ...................................................... 39
3.4: Details of the recursion .......................................................... 43
4: Main Results ................................................................................... 46
4.1: Dependence on q mod 4 .......................................................... 46
4.2: Integrality and Fourier transforms ....................................... 52
4.3: The one-block c a s e ................................................................... 59
4.4: Directions for further s tu d y ................................................... 63
5: Unitary Hall Polynom ials ............................................................... 65
5.1: Classes and o r b its ................................................................... 66
5.2: Computations involving unitary g ro u p s .............................. 68
5.3: The one-block c a s e .................................................................. 69
References ............................................................................................... 71
A ppendix ............................................................................................... 73