Group Theory: Birdtracks, Lie's, and Exceptional Groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional.

The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, ''birdtracks'' notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as ''negative dimensional'' relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.

Author(s): Predrag Cvitanovic
Edition: illustrated edition
Publisher: Princeton University Press
Year: 2008

Language: English
Commentary: 61404
Pages: 285

Acknowledgments......Page 10
Basic concepts......Page 18
First example: SU(n)......Page 22
Second example: E6 family......Page 25
Preliminaries......Page 27
Defining space, tensors, reps......Page 31
Invariants......Page 32
Invariance groups......Page 35
Projection operators......Page 37
Spectral decomposition......Page 38
Birdtracks......Page 40
Clebsch-Gordan coefficients......Page 42
Infinitesimal transformations......Page 45
Lie algebra......Page 49
Classification of Lie algebras by their primitive invariants......Page 51
Irrelevancy of clebsches......Page 52
A brief history of birdtracks......Page 53
Couplings and recouplings......Page 56
Wigner 3n-j coefficients......Page 59
Wigner-Eckart theorem......Page 60
Symmetrization......Page 63
Antisymmetrization......Page 65
Levi-Civita tensor......Page 67
Determinants......Page 69
Fully (anti)symmetric tensors......Page 71
Identically vanishing tensors......Page 72
Casimirs and Lie algebra......Page 75
Independent casimirs......Page 76
Adjoint rep casimirs......Page 78
Casimir operators......Page 79
Dynkin indices......Page 80
Quadratic, cubic casimirs......Page 83
Quartic casimirs......Page 84
Sundry relations between quartic casimirs......Page 86
Dynkin labels......Page 89
Group integrals for arbitrary reps......Page 92
Characters......Page 94
Examples of group integrals......Page 95
Two-index tensors......Page 97
Three-index tensors......Page 98
Young tableaux......Page 99
Young projection operators......Page 105
Reduction of tensor products......Page 109
U(n) recoupling relations......Page 113
U(n) 3n-j symbols......Page 114
SU(n) and the adjoint rep......Page 118
An application of the negative dimensionality theorem......Page 120
SU(n) mixed two-index tensors......Page 121
SU(n) mixed defining adjoint tensors......Page 122
SU(n) two-index adjoint tensors......Page 125
Casimirs for the fully symmetric reps of SU(n)......Page 130
SU(n), U(n) equivalence in adjoint rep......Page 131
Sources......Page 132
Two-index tensors......Page 135
Mixed adjoint defining rep tensors......Page 136
Two-index adjoint tensors......Page 137
Three-index tensors......Page 141
Gravity tensors......Page 143
SO(n) Dynkin labels......Page 146
Spinography......Page 149
Fierzing around......Page 152
Fierz coefficients......Page 156
6-j coefficients......Page 157
Exemplary evaluations, continued......Page 159
Invariance of -matrices......Page 160
Handedness......Page 161
Kahane algorithm......Page 162
Two-index tensors......Page 166
SU(n) = SU(-n)......Page 169
SO(n) = Sp(-n)......Page 171
Spinsters......Page 173
Racah coefficients......Page 178
Heisenberg algebras......Page 179
Reps of SU(2)......Page 181
SU(3) as invariance group of a cubic invariant......Page 183
Levi-Civita tensors and SU(n)......Page 186
SU(4)--SO(6) isomorphism......Page 187
Alternativity and reduction of f-contractions......Page 191
Primitivity implies alternativity......Page 194
Casimirs for G2......Page 196
Hurwitz's theorem......Page 197
Two-index tensors......Page 200
Decomposition of Sym3 A......Page 203
Diophantine conditions......Page 205
Dynkin labels and Young tableaux for E8......Page 206
Reduction of two-index tensors......Page 209
Mixed two-index tensors......Page 211
Diophantine conditions and the E6 family......Page 212
Three-index tensors......Page 213
Defining adjoint tensors......Page 215
Two-index adjoint tensors......Page 218
Dynkin labels and Young tableaux for E6......Page 222
Casimirs for E6......Page 223
Springer relation......Page 226
Springer's construction of E6......Page 227
Two-index tensors......Page 229
Defining adjoint tensors......Page 232
Jordan algebra and F4(26)......Page 235
Dynkin labels and Young tableaux for F4......Page 236
SO(4) family......Page 238
Defining adjoint tensors......Page 240
Lie algebra identification......Page 241
E7 family......Page 243
Dynkin labels and Young tableaux for E7......Page 246
Magic Triangle......Page 248
A brief history of exceptional magic......Page 251
Extended supergravities and the Magic Triangle......Page 254
Epilogue......Page 255
Uniqueness of Young projection operators......Page 258
Normalization and completeness......Page 259
Dimension formula......Page 260
Index......Page 262