This is a title on the foundations of defeasible logic, which explores the formal properties of everyday reasoning patterns whereby people jump to conclusions, reserving the right to retract them in the light of further information. Although technical in nature the book contains sections that outline basic issues by means of intuitive and simple examples. This book is primarily targeted at philosophers interested in the foundations of defeasible logic, logicians, and specialists in artificial intelligence and theoretical computer science.
Author(s): Aldo Antonelli
Publisher: Cambridge University Press
Year: 2005
Language: English
Pages: 132
Cover......Page 1
Half-Title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
List of Figures......Page 9
Foreword......Page 11
ACKNOWLEDGMENTS......Page 14
1.1 FIRST-ORDER LOGIC......Page 15
1.2 CONSEQUENCE RELATIONS......Page 18
1.3 NONMONOTONIC LOGICS......Page 23
1.4 SKEPTICAL VERSUS CREDULOUS REASONING......Page 32
1.5 FLOATING CONCLUSIONS......Page 34
1.6 CONFLICTS AND MODULARITY......Page 38
1.7 ASSESSMENT......Page 41
2.1 BACKGROUND AND MOTIVATION......Page 43
2.2 GRAPH-THEORETICAL PRELIMINARIES......Page 49
2.3 CONSTRUCTING EXTENSIONS......Page 52
2.4 NON-WELL-FOUNDED NETWORKS......Page 57
2.5.1 Decoupling......Page 63
2.5.2 Zombie Paths......Page 64
2.5.3 Infinite Networks......Page 65
2.6 PROOFS OF SELECTED THEOREMS......Page 68
3.1 INTRODUCTORY REMARKS......Page 73
3.2 CATEGORICAL DEFAULT THEORIES......Page 76
3.3 EXAMPLES......Page 79
3.4 GROUNDED EXTENSIONS......Page 83
3.5 EXAMPLES, CONTINUED......Page 86
3.6 PROOFS OF SELECTED THEOREMS......Page 89
4.1 DEFEASIBLE CONSEQUENCE......Page 100
4.2 ALTERNATIVE DEVELOPMENTS......Page 104
4.2.1 Seminormal Theories......Page 105
4.2.2 Optimal Extensions......Page 107
4.2.3 Circumspect Extensions......Page 109
4.3 CONCLUSIONS AND COMPARISONS......Page 110
4.3.1 Existence of Extensions......Page 111
4.3.2 Defeasible Consequence – Again......Page 113
4.3.3 Floating Conclusions, Conflicts, and Modularity......Page 115
4.4 INFINITELY MANY DEFAULTS......Page 116
4.5 PROOFS OF SELECTED THEOREMS......Page 117
Bibliography......Page 127
Index......Page 131