This book provides a definition of Green functors for a finite group G, and of modules over it, in terms of the category of finite G-sets. Some classical constructions, such as the associated categroy or algebra, have a natural interpretation in that framework. Many notions of ring theory can be extended to Green functors (opposite Green functor, bimodules, Morita theory, simple modules, centres,...). There are moreover connections between Green functors for different groups, given by functors associated to bisets. Intended for researchers and students in representation theory of finite groups it requires only basic algebra and category theory, though knowledge of the classical examples of Mackey functors is probably preferable.
Author(s): N. Bourbaki
Series: Lecture Notes in Mathematics
Edition: 1
Publisher: Springer
Year: 1997
Language: English
Pages: 342
Title......Page 0
Contents......Page 3
Introduction......Page 6
Mackey functors......Page 9
Green functors......Page 44
The category associated to a Green functor......Page 64
The algebra associated to a Green functor......Page 84
Morita equivalence and relative projectivity......Page 101
Construction of Green functors......Page 124
A Morita theory......Page 154
Composition......Page 167
Adjoint constructions......Page 183
Adjunctions and Green functions......Page 223
The simple modules......Page 275
Centres......Page 305
Bibliography......Page 337
Index......Page 339