Green Chemistry: Environmentally Benign Reactions

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents a large number of organic reactions performed under green conditions, which were earlier performed using anhydrous conditions and various volatile organic solvents. The conditions used involve green solvents like water, super critical carbon dioxide, ionic liquids, polymer-supported reagents, polyethylene glycol and perfluorous liquids. A number of reactions have been conducted in solid state without using any solvent. Most of the reactions have been conducted under microwave irradiations and sonication. In large number of reactions, catalysts like phase transfer catalysts, crown ethers and biocatalysts have been used. Providing the protocols that every laboratory should adopt, this book elaborates the principles of green chemistry and discusses the planning and preparations required to convert to green laboratory techniques. It includes applications relevant to practicing researchers, students and environmental chemists. This book is useful for students (graduate and postgraduate), researchers and industry professionals in the area of chemical engineering, chemistry and allied fields.

Author(s): V.K. Ahluwalia
Edition: 3
Publisher: Springer
Year: 2021

Language: English
Pages: 375
City: Singapore

Foreword
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Contents
About the Author
1 Green Chemistry
1.1 Introduction
1.2 What Is Green Chemistry?
1.3 Need for Green Chemistry
1.4 Obstacles in the Pursuit of the Goals of Green Chemistry
1.5 Principles of Green Chemistry
1.6 Explanation of the 12 Principles of Green Chemistry
1.7 Planning a Green Synthesis in a Chemical Laboratory
1.7.1 Percentage Atom Utilization
1.7.2 Evaluating the Type of the Reaction Involved
1.7.3 Selection of Appropriate Solvent
1.7.4 Reagents
1.7.5 Use of Protecting Groups
1.7.6 Use of Catalysts
1.7.7 Energy Requirement
1.8 Some Examples of Green Synthesis
1.8.1 Adipic Acid
1.8.2 Catechol
1.8.3 Disodium Iminodiacetate
1.8.4 Hofmann Elimination
1.8.5 Benzoic Acid from Methyl Benzoate
1.8.6 Benzoic Acid by Oxidation of Toluene
1.8.7 Oxidation of Alcohols to Carbonyl Compounds
1.8.8 Diels Alder Reaction
1.8.9 Decarboxylation Reactions
1.8.10 Sonochemical Simmons–Smith Reaction
1.8.11 Surfactants for Carbon Dioxide
1.8.12 A Safe Marine Antifoulant
References
2 Green Reactions
2.1 Acyloin Condensation [1]
2.1.1 Acyloin Condensation Using Coenzyme, Thiamine
2.1.2 Applications
2.2 Aldol Condensation [6]
2.2.1 Acid-Catalysed Aldol Condensation
2.2.2 Crossed Aldol Condensation
2.2.3 Aldol Type Condensations of Aldehydes with Nitroalkanes and Nitriles
2.2.4 Vinylogous Aldol Reaction
2.2.5 Aldol Condensation of Silyl Enol Ethers in Aqueous Media
2.2.6 Aldol Condensation in Solid Phase
2.2.7 Aldol Condensation in Supercritical Water
2.2.8 Aldol Condensation in Ionic Liquids
2.2.9 Asymmetric Aldol Condensations
2.2.10 Applications
2.3 Arndt–Eistert Synthesis [23]
2.3.1 Applications (Scheme 2.41)
2.4 Baeyer–Villiger Oxidation
2.4.1 Baeyer–Villiger Oxidation in Aqueous Phase
2.4.2 Baeyer–Villiger Oxidation in Solid State
2.4.3 Enzymatic Baeyer–Villiger Oxidation
2.4.4 Applications
2.5 Baker–Venkataraman Rearrangement [43]
2.5.1 PTC-Catalysed Synthesis of Flavones
2.5.2 Application
2.6 Barbier Reaction [45]
2.6.1 Barbier Reaction Under Sonication
2.6.2 Applications (Scheme 2.70)
2.7 Barton Reaction
2.7.1 Applications (Scheme 2.73)
2.8 Baylis-Hillman Reaction
2.8.1 Baylis–Hillman Reaction Using Microwaves
2.8.2 Baylis–Hillman Reaction in Supercritical Carbon Dioxide
2.8.3 Baylis–Hillman Reaction in Ionic Liquids
2.8.4 Baylis–Hillman Reaction in Polyethylene Glycol (PEG)
2.9 Beckmann Rearrangement
2.9.1 Beckmann Rearrangement Under Microwave Irradiation
2.9.2 Beckmann Rearrangement in Ionic Liquids
2.10 Benzil-Benzilic Rearrangement
2.10.1 Benzil-Benzilic Acid Rearrangement under Microwave Irradiation
2.10.2 Applications
2.11 Benzoin Condensation [90]
2.11.1 Benzoin Condensation Under Catalytic Conditions
2.11.2 Applications
2.12 Biginelli Reaction [100]
2.12.1 Biginelli Reaction Under Microwave Irradiation
2.12.2 Biginelli Reaction in Ionic Liquids
2.13 Bouveault Reaction [103]
2.13.1 Bouveault Reactions Under Sonication
2.14 Cannizzaro Reaction [106]
2.14.1 Crossed Cannizzaro Reaction
2.14.2 Intramolecular Cannizzaro Reaction
2.14.3 Cannizzaro Reactions Under Sonication
2.14.4 Cannizzaro Reactions in Solid State
2.14.5 Applications (Scheme 2.118)
2.15 Claisen Rearrangement [113]
2.15.1 Claisen Rearrangement in Water
2.15.2 Claisen Rearrangement in Near Critical Water
2.15.3 Applications (Classical Claisen Condensation)
2.15.4 Applications (Aqueous Phase Claisen Rearrangement)
2.16 Claisen–Schmidt Reaction [130]
2.16.1 Claisen–Schmidt Reaction in Aqueous Phase
2.16.2 Claisen–Schmidt Reaction in Ionic Liquids
2.16.3 Applications [137] (Scheme 2.136)
2.17 Clemmensen Reduction
2.17.1 Applications (Scheme 2.140)
2.18 Curtius Rearrangement
2.19 Dakin Reaction [149]
2.19.1 Dakin Reaction Under Ultrasonic Irradiation
2.19.2 Dakin Reaction in Solid State
2.19.3 Applications
2.20 Darzens Reaction
2.20.1 Darzens Reaction in the Presence of Phase Transfer Catalyst
2.20.2 Applications
2.21 Dieckmann Condensation
2.21.1 Dieckmann Condensation in Solid State
2.21.2 Dieckmann Condensation Under Sonication
2.21.3 Dieckmann Condensation Using Polymer Support Technique
2.21.4 Applications
2.22 Diels–Alder Reaction [176]
2.22.1 Diels–Alder Reactions Under Microwave Irradiation
2.22.2 Diels–Alder Reactions in Aqueous Phase
2.22.3 Diels–Alder Reactions in High Temperature Water and Supercritical Water
2.22.4 Diels–Alder Reaction Under Sonication
2.22.5 Diels–Alder Reaction Using Ionic Liquids
2.22.6 Diels–Alder Reaction in Supercritical Carbon Dioxide
2.22.7 Asymmetric Diels–Alder Reactions in Water
2.22.8 Hetero-Diels–Alder Reactions
2.22.9 Intramolecular Diels–Alder Reaction
2.23 Fischer-Indole Synthesis
2.23.1 Fischer-Indole Synthesis in Dry Conditions
2.23.2 Fischer-Indole Synthesis in Water
2.24 Friedel–Crafts Reaction
2.24.1 Friedel–Crafts Alkylation
2.24.2 Friedel–Crafts Acylation
2.25 Friedlander Synthesis
2.25.1 Friedlander Synthesis Under Microwave Irradiation
2.26 Fries Rearrangement
2.26.1 Photo-Fries Rearrangement [237, 238]
2.26.2 Fries-Rearrangement Under Microwave Irradiation [240]
2.27 Graebe-Ullman Synthesis
2.27.1 Graebe–Ullman Synthesis Under Microwave Irradiation
2.28 Grignard Reaction
2.28.1 Grignard Reaction Under Sonication
2.28.2 Grignard Reaction in Solid State
2.28.3 Applications
2.29 Heck Reaction
2.29.1 Heck Reaction in Aqueous Phase
2.29.2 Heck Reaction in Supercritical Carbon Dioxide
2.29.3 Heck Reaction in Ionic Liquids
2.29.4 Heck Reaction in Polyethylene Glycol
2.29.5 Heck Reaction Using Fluorous Phase Technique
2.30 Hantzsch Pyridine Synthesis
2.30.1 Hantzsch Pyridine Synthesis Under Microwave Irradiation
2.31 Henry Reaction
2.31.1 Henry Reaction Under Microwave Irradiation
2.32 Hiyama Reaction [273]
2.33 Hofmann Elimination [275]
2.33.1 Hoffmann Elimination Under Microwave Irradiation
2.34 Knoevenagel Condensation
2.34.1 Knoevenagel Reaction in Water
2.34.2 Knoevenagel Condensation Under Microwave Irradiation
2.34.3 Knoevenagel Condensation in Solid State
2.34.4 Knoevenagel Condensation in Ionic Liquids
2.34.5 Applications
2.35 Kolbe–Schmitt Reaction
2.35.1 Kolbe–Schmitt Reaction in SC CO2
2.36 Mannich Reaction [295]
2.36.1 Mannich Reaction in Water
2.36.2 Mannich-Type Reactions
2.37 Meyer–Schuster Rearrangement [302]
2.38 Michael Addition
2.38.1 Michael Addition Under PTC Conditions
2.38.2 Michael Addition in Aqueous Medium
2.38.3 Michael Addition in Solid State
2.38.4 Michael Addition in Ionic Liquids
2.38.5 Aza-Michael Reaction
2.38.6 Applications
2.39 Mukaiyama Reaction
2.39.1 Mukaiyama Reaction in Aqueous Phase
2.40 Pechmann Condensation
2.40.1 Microwave-Promoted Pechmann Reaction
2.40.2 Pechmann Condensation in the Presence of Ionic Liquids
2.41 Paterno-Büchi Reaction
2.42 Pauson–Khand Reaction [332]
2.43 Pinacol Coupling [333]
2.44 Pinacol–Pinacolone Rearrangement
2.44.1 Pinacol-Pinacolone Rearrangement in Water Using Microwave Irradiation
2.44.2 Pinacol-Pinacolone Rearrangement on Irradiation with Microwaves in Solid State
2.45 Prins Reaction [344]
2.46 Reformatsky Reaction
2.46.1 Reformatsky Reaction Using Sonication
2.46.2 Reformatsky Reaction in Solid State
2.46.3 Applications (Scheme 2.341)
2.47 Rupe Rearrangement [353]
2.48 Simmons–Smith Reaction [355]
2.48.1 Simmons–Smith Reaction Under Sonication
2.48.2 Applications
2.49 Sonogashira Reaction [368]
2.49.1 Sonogashira Reaction in Water
2.49.2 Sonogashira Reaction in Ionic Liquids
2.50 Stetter Reaction [374]
2.51 Stille Coupling Reaction [375]
2.51.1 Stille Coupling Reaction in Water
2.51.2 Stille Coupling Reaction in SC-CO2
2.51.3 Stille Coupling Reaction in Ionic Liquids
2.51.4 Stille Coupling Using Fluorous Phase Technique
2.52 Strecker Synthesis [382]
2.52.1 Strecker Synthesis Under Sonication
2.52.2 Applications (Scheme 2.373)
2.53 Suzuki Coupling Reaction
2.53.1 Suzuki Coupling Reaction in Aqueous Medium
2.53.2 Suzuki Coupling Reaction in Ionic Liquids
2.53.3 Suzuki Coupling Reaction in Polyethylene Glycol (PEG)
2.54 Ullmann Reaction [402]
2.54.1 Ullmann Coupling Under Sonication
2.54.2 Ullmann-Type Coupling in Water
2.54.3 Applications (Scheme 2.392)
2.55 Weiss–Cook Reaction [419]
2.56 Williamsons Ether Synthesis [421]
2.56.1 Phase Transfer Catalysed Williamson Ether Synthesis
2.56.2 Applications (Scheme 2.397)
2.57 Wittig Reaction [430]
2.57.1 The Wittig Reaction with Aqueous Sodium Hydroxide
2.57.2 Wittig Reaction in Solid Phase
2.57.3 Wittig Reaction in Ionic Liquids
2.57.4 Applications
2.58 Wurtz Reaction
2.58.1 Wurtz Reaction Under Sonication
2.58.2 Wurtz Reaction in Water
2.58.3 Applications
References
3 Green Preparation
3.1 Aqueous Phase Reactions
3.1.1 Hydrolysis of Methyl Salicylate with Alkali
3.1.2 Chalcone
3.1.3 6-Ethoxycarbonyl-3,5-Diphenyl-2-Cyclohexenone1
3.1.4 Δ1,9-2-Octalone
3.1.5 p-Ethoxyacetanilide (Phenacetin)
3.1.6 p-Acetamidophenol (Tylenol)
3.1.7 Vanillideneacetone
3.1.8 2,4-Dihydroxybenzoic Acid (β-Resorcylic Acid)1
3.1.9 Iodoform
3.1.10 Endo-cis-1,4-Endoxo–Δ5-Cyclohexene-2,3- Dicarboxylic Acid
3.1.11 Trans Stilbene
3.1.12 2-Methyl-2-(3-Oxobutyl)-1,3-Cyclopentanedione
3.1.13 Hetero Diels–Alder Adduct
3.2 Solid State (Solventless) Reactions
3.2.1 3-Pyridyl-4 (3H) Quinazolone1
3.2.2 Diphenylcarbinol
3.2.3 Phenylbenzoate
3.2.4 Azomethines
3.3 Photochemical Reactions
3.3.1 Benzopinacol
3.3.2 Conversion of Trans-Azobenzene to Cis-Azobenzene
3.3.3 Conversion of trans Stilbene into cis Stilbene
3.4 PTC-Catalysed Reactions
3.4.1 Phenylisocyanide (C6H5N≡≡C)
3.4.2 1-Cyano Octane (CH3(CH2)6CH2CN)
3.4.3 1-Oxaspiro-[2,5]-Octane-2-Carbonitrile
3.4.4 3,4-Diphenyl-7-Hydroxycoumarin
3.4.5 Flavone
3.4.6 Dichloronorcarane [2,2-Dichlorobicyclo (4.1.0) Heptane]
3.4.7 Oxidation of Toluene to Benzoic Acid
3.4.8 Benzonitrile from Benzamide
3.4.9 n-Butyl Benzyl Ether
3.4.10 Salicylaldehyde
3.5 Rearrangement Reactions
3.5.1 Benzopinacolone
3.5.2 2-Allyl Phenol
3.6 Microwave-Induced Reactions
3.6.1 9,10-Dihydroanthracene-Endo-α,β-Succinic Anhydride (Anthracene-Maleic Anhydride Adduct)
3.6.2 3-Methyl-1-Phenyl-5-Pyrazolone
3.6.3 Preparation of Derivatives of Some Organic Compounds
3.6.4 Copper Phthalocyanine
3.7 Enzymatic Transformations
3.7.1 Ethanol
3.7.2 (S)-(+)-Ethyl 3-Hydroxybutanoate
3.7.3 Benzoin
3.7.4 1-Phenyl-(1S) Ethan-1-ol from Acetophenone
3.7.5 Deoximation of Oximes by Ultrasonically Stimulated Baker’s Yeast
3.8 Sonication Reactions
3.8.1 Butyraldehyde
3.8.2 2-Chloro-N-Aryl Anthranilic Acid
3.9 Esterification
3.9.1 Benzocaine (Ethyl p-Amino Benzoate)
3.9.2 Isopentyl Acetate (Banana Oil)
3.9.3 Methyl Salicylate (Oil of Wintergreen)
3.10 Enamine Reaction
3.10.1 2–Acetyl Cyclohexanone
3.11 Reactions in Ionic Liquids
3.11.1 1-Acetylnaphthalene
3.11.2 Ethyl 4-Methyl-3-Cyclohexene Carboxylate
3.12 Green Preparation Using Renewable Resources
3.12.1 Biodiesel from Vegetable Oil
3.13 Reactions Using the Principles of Atom Economy (Avoiding Waste)
3.13.1 Rearrangement Reactions
3.13.2 Addition Reactions
3.13.3 Substitution Reactions
3.13.4 Elimination Reactions
3.14 Extraction of D-Limonene from Orange Peels Using Liquid CO2
Index