Gravitational Systems of Groundwater Flow: Theory, Evaluation, Utilization

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book recognizes groundwater flow as a fundamental geologic agent, and presents a wide-ranging and illustrated overview of its history, principles, scientific consequences and practical utilization. The author, one of the founding fathers of modern hydrogeology, highlights key interrelationships between seemingly disparate processes and systems by tracing them to a common root cause - gravity-driven groundwater flow. Numerous examples demonstrate practical applications in a diverse range of subjects, including land-use planning, environment protection, wetland ecology, agriculture, forestry, geotechnical engineering, nuclear-waste disposal, mineral and petroleum exploration, and geothermal heat flow. The book contains numerous user-friendly features for a multidisciplinary readership, including full explanations of the relevant mathematics, emphasis on the physical meaning of the equations, and an extensive glossary. It is a key reference for researchers, consultants and advanced students of hydrogeology and reservoir engineering.

Author(s): József Tóth
Edition: 1
Publisher: Cambridge University Press
Year: 2009

Language: English
Pages: 311

Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 9
Preface......Page 11
1.1 The subject matter: definition, history, study methods......Page 15
1.2.1 Darcy's experiment and Law......Page 22
1.2.2.1 Fluid potential, Φ, and hydraulic head, h......Page 24
1.2.2.2 Pore pressure vertical pressure-gradient and dynamic pressure-increment......Page 28
1.2.3 The Laplace and diffusion equations......Page 36
2.1 The basic flow pattern......Page 40
2.2.1 Pore pressure: p......Page 43
2.2.2 Vertical pressure-gradient: dp/dd = -dp/dz = γ: pressure-vs.-depth or p(d)-profile......Page 44
2.2.3 Dynamic pressure increment: Delta p......Page 45
3.1.1 Effect of water-table configuration......Page 47
3.1.1.1 Effects of undulations of the water table......Page 49
3.1.2 Effect of basin depth......Page 51
3.1.3 Zijl's analysis of the scales of water-table relief, depths of flow-system penetration, and relation between spatial and temporal scales......Page 55
3.1.4 Effects of major regional land-form types......Page 61
3.2 Effects of basin geology......Page 64
3.2.1.1 Two-layer cases......Page 65
3.2.1.2 Three-layer cases.......Page 67
3.2.1.3 Sloping beds outcropping at the land surface......Page 71
3.2.2 Effects of lenses......Page 72
3.2.2.2 Lens-scale effects of lenticular rock bodies......Page 73
3.2.3.1 Barrier faults......Page 80
3.2.3.2 Conduit faults......Page 82
3.2.4 Effects of anisotropy......Page 83
3.3 Effects of temporal changes in the water table: transient pore pressures and flow systems......Page 85
3.3.1 Time lag and time scales in pore-pressure adjustment......Page 86
3.3.2 Effect on basinal flow patterns......Page 91
3.4 Hydraulic continuity: principle and concept......Page 95
3.4.1 The concept of regional hydraulic continuity......Page 96
3.4.1.1 Evolution of the concept......Page 97
3.4.2 Consequences of regional hydraulic continuity......Page 100
3.4.2.2 Systematic distribution of matter and heat: the geologic agency of groundwater......Page 101
3.4.3 Conclusions......Page 102
4.1 Introduction......Page 105
4.2.1 In-situ interaction between groundwater and its environment......Page 107
4.2.2 Flow: a mechanism of systematic transport and distribution......Page 108
4.2.3 Ubiquity and simultaneity......Page 110
4.3.1 Chemical processes......Page 111
4.3.3 Kinetic or transport processes......Page 114
4.4.1 The hydrogeologic environment......Page 116
4.4.2 Types of manifestations......Page 117
4.4.2.1 Hydrology and hydraulics......Page 118
4.4.2.2 Chemistry and mineralogy......Page 121
4.4.2.3 Vegetation......Page 123
4.4.2.4 Soil and rock mechanics......Page 127
4.4.2.5 Geomorphology......Page 128
4.4.2.6 Transport and accumulation......Page 132
4.5 Summary......Page 140
5 Practical applications: case studies and histories......Page 142
5.1.1 The hydrogeological reconnaissance maps of alberta, canada......Page 143
5.1.3 'Hydrologic Investigations: Atlas HA-339', NW Minnesota; USGS......Page 146
5.1.4 Protection and restoration of wetland ecosystems based on groundwater flow-system analysis, the Netherlands......Page 153
5.1.5 Environmental management of groundwater basins, Japan......Page 156
5.2 Effects of recharge–discharge area characteristics on groundwater-related practical problems......Page 157
5.2.1 Location and development of a municipal groundwater supply, Olds, Alberta, Canada......Page 158
5.2.2 Underestimated rates for required dewatering, and land subsidence at lignite mine in discharge area, Neyveli, Tamil Nadu, India......Page 162
5.2.3 Failure of a municipal sewage lagoon built on local recharge area, Brooks, Alberta, Canada......Page 165
5.2.4 Deep penetration of contaminants in recharge areas and saltwater up-coning in discharge areas, central Netherlands......Page 168
5.2.5 Transport of phosphorous by groundwater into Narrow Lake from near-shore recharge areas Alberta, Canada......Page 171
5.2.6 Cause and reclamation of liquefied ground, Trochu, Alberta, Canada......Page 174
5.2.7 Groundwater flow and heat-flow anomalies: assessing low-enthalpy geothermal potential, northern Switzerland......Page 177
5.2.8 Increased susceptibility of slopes to failure in discharge areas: theoretical analysis......Page 182
5.2.9 Analysis and mitigation of land-slide danger, Campo Vallemaggia, Switzerland......Page 188
5.2.10 Groundwater flow systems and eco-hydrological conditions: study of the effects of land-use changes......Page 194
5.3 Site-selection for repositories of high-level nuclear-fuel waste: examples for groundwater flow-system studies......Page 202
5.3.1 Canada: the Recharge Area Concept (AECL: Atomic Energy of Canada, Ltd)......Page 204
5.3.2 Sweden: (Swedish Nuclear Fuel Supply Co/Division Kärn–Bränsle–Säkerhet: SKBF/KBS)......Page 209
5.3.4 U.S.A: Palo Duro Basin, Texas......Page 215
5.4.1 Highly permeable rock pods......Page 220
5.4.2 Hydraulic barriers to flow......Page 222
5.4.3 Abrupt change in chemistry across flow-system boundary......Page 224
5.4.4 Identifying mechanisms of subhydrostatic pore-pressure generation......Page 230
5.5 Exploration for petroleum and metallic minerals......Page 239
5.5.1 The hydraulic theory of petroleum migration and its application to exploration......Page 241
5.6 Potential role of flow-system analysis in surface geochemical prospecting......Page 245
5.6.1 Exploration for uranium deposits by groundwater flow-system analysis......Page 251
5.6.2 Gravity-driven flow systems and strata-bound ore deposits......Page 252
6 Gravitational systems of groundwater flow and the science of hydrogeology......Page 258
Glossary......Page 262
References......Page 273
Appendices......Page 288
Appendix A......Page 289
Appendix B......Page 295
Index......Page 308