Graph Learning and Network Science for Natural Language Processing

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Advances in graph-based natural language processing (NLP) and information retrieval tasks have shown the importance of processing using the Graph of Words method. This book covers recent concrete information, from the basics to advanced level, about graph-based learning, such as neural network-based approaches, computational intelligence for learning parameters and feature reduction, and network science for graph-based NPL. It also contains information about language generation based on graphical theories and language models.

Features:

  • Presents a comprehensive study of the interdisciplinary graphical approach to NLP
  • Covers recent computational intelligence techniques for graph-based neural network models
  • Discusses advances in random walk-based techniques, semantic webs, and lexical networks
  • Explores recent research into NLP for graph-based streaming data
  • Reviews advances in knowledge graph embedding and ontologies for NLP approaches

This book is aimed at researchers and graduate students in computer science, natural language processing, and deep and machine learning.

Author(s): Muskan Garg, Amit Kumar Gupta, Rajesh Prasad
Series: Computational Intelligence Techniques
Publisher: CRC Press
Year: 2022

Language: English
Pages: 256
City: Boca Raton