As global navigation satellite systems (GNSS) such as GPS have grown more pervasive, the use of GNSS to automatically control ground vehicles has drawn increasing interest. This cutting-edge resource offers a thorough understanding of this emerging application area of GNSS. Written by highly-regarded authorities in the field, this unique reference covers a wide range of key topics, including ground vehicles models, psuedolites, highway vehicle control, unmanned ground vehicles, farm tractors, and construction equipment. The book is supported with over 150 illustrations and more than 180 equations.
Author(s): David M. Bevly
Publisher: Artech House
Year: 2009
Language: English
Pages: 285
Tags: Транспорт;Организация и управление дорожным движением;
GNSS for Vehicle Control......Page 2
Contents......Page 6
Preface......Page 14
Acknowledgments......Page 18
1.1 Global Navigation Satellite System (GNSS)......Page 20
1.1.1 Description of a Typical GNSS......Page 21
1.1.2 Simple (Pseudorange) GNSS Navigation......Page 22
1.1.3 Differential GNSS Navigation......Page 25
1.1.4 Precise (RTK) GNSS Navigation......Page 27
1.1.5 Current and Future GNSS Constellations......Page 30
1.2.2 Pseudolite/GNSS Navigation......Page 33
1.2.3 Differential Pseudolite/GNSS Navigation......Page 34
1.2.5 Stand-Alone Pseudolite Navigation......Page 35
1.2.6 Conflicts with GNSS Frequencies......Page 36
1.3.1 Linear Inertial Instruments: Accelerometers......Page 37
1.3.2 Angular Inertial Instruments: Gyroscopes......Page 39
1.3.3 Ideal Inertial Navigation......Page 40
1.3.4 Sensing Earth Effects......Page 42
1.3.5 Inertial Instrument Errors......Page 44
1.3.6 Inertial Error Propagation......Page 49
1.4 Odometer Technology......Page 50
1.4.2 Wheel Slip......Page 51
1.4.3 Wheel Radius Error......Page 52
1.5 GNSS/Inertial Integration......Page 53
References......Page 54
2 Vision Aided Navigation Systems......Page 58
2.1.1 Lidar-Based Positioning......Page 59
2.1.2 Camera-Based Positioning......Page 61
2.2 Coordinate Frame Rotation and Translation......Page 62
2.2.1 Two-Dimensional Rotations......Page 63
2.2.2 Three-Dimensional Rotations......Page 64
2.2.3 Coordinate Frame Translation......Page 65
2.2.4 Global Coordinate Frame Rotations......Page 66
2.3 Waypoint-Based Maps......Page 67
2.4 Aiding Position, Speed, and Heading Navigation Filter with Vision Measurements......Page 68
2.4.1 Two-Dimensional Map Construction......Page 69
2.4.3 Checking Waypoint Map Position......Page 70
2.5 Aiding Closely Coupled Navigation Filter with Vision Measurements......Page 71
2.5.1 Three-Dimensional Map Construction......Page 73
2.5.2 Measurement Structure......Page 75
2.5.4 Results......Page 77
References......Page 78
3.2 SAE Vehicle Coordinates......Page 80
3.3.1 Basics......Page 82
3.3.2 Understeer Gradient......Page 89
3.3.3 Four-Wheel Bicycle Model......Page 90
3.4.2 Contact Patch and Slip......Page 93
3.4.3 Tire Models......Page 95
3.5.1 Free Body Diagram......Page 98
3.6 Additional Models Used in this Work......Page 99
3.6.1 Two-Wheeled Vehicle......Page 100
3.6.2 Trailer Model......Page 101
3.7 Vehicle Model Validation......Page 103
References......Page 107
4.1 Introduction......Page 110
4.2 Kalman Filter......Page 111
4.3.1 Loose Coupling......Page 112
4.3.2 Close Coupling......Page 113
4.4 Speed Estimation......Page 114
4.4.1 Accelerometer and GPS......Page 115
4.4.2 Accelerometer, GPS, and Wheel Speed......Page 121
4.5 Heading Estimation......Page 126
4.6 Position, Speed, and Heading Estimation......Page 130
4.6.1 Coordinate Conversion......Page 131
4.6.2 Accelerometer, Yaw Rate Gyroscope, GPS, and Wheel Speed......Page 132
4.7.1 Generation of Sideslip......Page 139
4.7.2 Sideslip Compensation with a Dual Antenna GPS Receiver......Page 141
4.8 Closely Coupled Integration......Page 149
References......Page 162
5.1 Introduction......Page 164
5.2 Sideslip Calculation......Page 165
5.3 Vehicle Estimation......Page 166
5.4.1 Test Scenarios......Page 167
5.5 Kinematic Estimator (Single GPS Antenna)......Page 168
5.6 Kinematic Kalman Filter (Dual Antenna)......Page 170
5.7 Tire Parameter Identification......Page 173
5.8 Model-Based Kalman Filter......Page 179
5.8.1 Linear Tire Model......Page 180
5.8.2 Nonlinear Tire Model......Page 183
5.8.3 Estimator Accuracies......Page 189
5.9 Conclusions......Page 190
References......Page 191
6.2 Vehicle Model......Page 194
6.3 Speed Controller......Page 198
6.4.1 Classical Steer Angle Controller......Page 200
6.4.2 Classical Yaw Rate Controller......Page 201
6.5.1 Heading Model......Page 204
6.5.2 Heading Error Calculations......Page 205
6.5.3 Heading Control......Page 206
6.5.4 Simulation Results......Page 209
6.6 Lateral Control......Page 211
6.6.1 Error Calculation......Page 212
6.6.2 Lateral Position Model......Page 217
6.6.3 Lateral Position Control......Page 219
6.7 Implement/Trailer Control......Page 222
6.7.1 Trailer Model......Page 223
6.7.2 Error Calculation......Page 225
6.7.3 Trailer Control......Page 227
6.7.4 Simulation Results......Page 229
References......Page 231
7.1 Pseudolite Applications......Page 234
7.1.1 Open-Pit Mining......Page 235
7.1.3 Urban Navigation......Page 237
7.1.4 Indoor Applications......Page 238
7.2.1 IntegriNautics IN400......Page 240
7.2.2 Novariant Terralite XPS System......Page 242
7.2.3 Locata LocataLites......Page 244
References......Page 245
A.2 System Model......Page 248
A.3 Discretization......Page 250
A.4 Least Squares......Page 252
Example A.1......Page 254
A.5 Weighted Least Squares......Page 255
Example A.2......Page 257
A.6 Recursive Weighted Least Squares......Page 262
A.7 Kalman Filter......Page 265
A.8 Extended Kalman Filter......Page 268
References......Page 271
About the Authors......Page 272
Index......Page 276