Global Climate Change and Plant Stress Management

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Mohammad Wahid Ansari, Anil Kumar Singh, Narendra Tuteja
Publisher: Wiley
Year: 2023

Language: English

Cover
Title Page
Copyright Page
Contents
List of Contributors
Foreword
Preface
Author Biographies
Part 1 Views and Visions
Chapter 1 Boosting Resilience of Global Crop Production Through Sustainable Stress Management
References
Chapter 2 Sustaining Food Security Under Changing Stress Environment
References
Chapter 3 Crop Improvement Under Climate Change
3.1 Crop Diversity to Mitigate Climate Change
3.2 Technology to Mitigate Climate Change
3.3 Farm Practices to Mitigate Climate Change
3.4 Conclusion
References
Chapter 4 Reactive Nitrogen in Climate Change, Crop Stress, and Sustainable Agriculture: A Personal Journey
4.1 Introduction
4.2 Reactive Nitrogen in Climate Change, Agriculture, and Beyond
4.3 Nitrogen, Climate, and Planetary Boundaries of Sustainability
4.4 Emerging Global Response and India’s Leadership in It
4.5 Regional and Global Partnerships for Effective Interventions
4.6 Building Crop NUE Paradigm Amidst Growing Focus on Stress
4.7 From NUE Phenotype to Genotype in Rice
4.8 Furthering the Research and Policy Agenda
References
Part 2 Climate Change: Global Impact
Chapter 5 Climate-Resilient Crops for CO2 Rich-Warmer Environment: Opportunities and Challenges
5.1 Introduction
5.2 Climate Change Trend and Abiotic Stress: Yield Losses Due to Major Climate Change Associated Stresses Heat, Drought and Their Combination
5.3 Update on Crop Improvement Strategies Under Changing Climate
5.3.1 Advances in Breeding and Genomics
5.3.2 Advances in Phenomics and High Throughput Platforms
5.3.3 Non-destructive Phenotyping to Exploit Untapped Potential of Natural Genetic Diversity
5.4 Exploiting Climate-Smart Cultivation Practices
5.5 CO2-Responsive C3 Crops for Future Environment
5.6 Conclusion
References
Chapter 6 Potential Push of Climate Change on Crop Production, Crop Adaptation, and Possible Strategies to Mitigate This
6.1 Introduction
6.2 Influence of Climate Change on the Yield of Plants
6.3 Crop Adaptation in Mitigating Extreme Climatic Stresses
6.4 Factors That Limit Crop Development
6.5 Influence of Climate Change on Plants’ Morphobiochemical and Physiological Processes
6.6 Responses of Plant Hormones in Abiotic Stresses
6.7 Approaches to Combat Climate Changes
6.7.1 Cultural Methodologies
6.7.2 Conventional Techniques
6.7.3 Strategies Concerned with Genetics and Genomics
6.7.4 Strategies of Genome Editing
6.7.5 Involvement of CRISPR/Cas9
6.8 Conclusions
Conflict of Interest Statement
Acknowledgment
References
Chapter 7 Agrifood and Climate Change: Impact, Mitigation, and Adaptation Strategies
7.1 Introduction
7.2 Causes of Climate Change
7.2.1 Greenhouse Gases
7.2.2 Fossil Fuel Combustion
7.2.3 Deforestation
7.2.4 Agricultural Expansion
7.3 Impact of Climate Change on Agriculture
7.3.1 Crop Productivity
7.3.2 Disease Development
7.3.3 Plant Responses to Climate Change
7.3.4 Livestock
7.3.5 Agriculture Economy
7.4 Mitigation and Adaptation to Climate Change
7.4.1 Climate-Smart Cultural Practices
7.4.2 Climate-Smart Agriculture Technologies
7.4.3 Stress-Tolerant Varieties
7.4.4 Precision Management of Nutrients
7.4.5 Forestry and Agroforestry
7.5 Conclusions and Future Prospects
References
Chapter 8 Dynamic Photosynthetic Apparatus in Plants Combats Climate Change
8.1 Introduction
8.2 Climate Change and Photosynthetic Apparatus
8.3 Engineered Dynamic Photosynthetic Apparatus
8.4 Conclusion and Prospects
References
Chapter 9 CRISPR/Cas Enables the Remodeling of Crops for Sustainable Climate-Smart Agriculture and Nutritional Security
9.1 Introduction: CRISPR/Cas Facilitated Remodeling of Crops
9.2 Impact of Climate Changes on Agriculture and Food Supply
9.3 Nutritionally Secure Climate-Smart Crops
9.4 Novel Game Changing Genome-Editing Approaches
9.4.1 Knockout-Based Approach
9.4.2 Knock-in-Based Approach
9.4.3 Activation or Repression-Based Approach
9.5 Genome Editing for Crop Enhancement: Ushering Towards Green Revolution 2.0
9.5.1 Mitigation of Abiotic Stress
9.5.2 Alleviation of Biotic Stress
9.5.3 Biofortification
9.6 Harnessing the Potential of NGS and ML for Crop Design Target
9.7 Does CRISPR/Cas Address the Snag of Genome Editing?
9.8 Edited Plant Code: Security Risk Assessment
9.9 Conclusion: Food Security on the Verge of Climate change
References
Part 3 Socioeconomic Aspects of Climate Change
Chapter 10 Perspective of Evolution of the C4 Plants to Develop Climate Designer C4 Rice as a Strategy for Abiotic Stress Management
10.1 Introduction
10.2 How Did Plants Evolve to the C4 System?
10.2.1 Gene Amplification and Modification
10.2.2 Anatomical Preconditioning
10.2.3 Increase in Bundle Sheath Organelles
10.2.4 Glycine Shuttles and Photorespiratory CO2 Pumps
10.2.5 Enhancement of PEPC and PPDK Activity in the Mesophyll Tissue
10.2.6 Integration of C3 and C4 Cycles
10.3 What Are the Advantages of C4 Plants over C3 Plants?
10.4 Molecular Engineering of C4 Enzymes in Rice
10.4.1 Green Tissue-Specific Promoters
10.4.2 Expressing C4 Enzyme, PEPC in Rice
10.4.3 Expressing C4 Enzyme, PPDK in Rice
10.4.4 Expressing C4 Enzyme, ME and NADP-ME in Rice
10.4.5 Expressing Multiple C4 Enzymes in Rice
10.5 Application of CRISPR for Enhanced Photosynthesis
10.6 Single-Cell C4 Species
10.7 Conclusion
Acknowledgments
References
Chapter 11 Role of Legume Genetic Resources in Climate Resilience
11.1 Introduction
11.2 Legumes Under Abiotic Stress
11.2.1 Legumes Under Drought Stress
11.2.2 Legumes Under Waterlogging
11.2.3 Legumes Under Salinity Stress
11.2.4 Legumes Under Extreme Temperature
11.3 Genetic Resources for Legume Improvement
11.3.1 Lentil
11.3.2 Mungbean
11.3.3 Pigeon Pea
11.3.4 Chickpea
11.4 Conclusion
References
Chapter 12 Oxygenic Photosynthesis – a Major Driver of Climate Change and Stress Tolerance
12.1 Introduction
12.2 Evolution of Chlorophyll
12.3 The Great Oxygenation Event
12.4 Role of Forest in the Regulation of O2 and CO2 Concentrations in the Atmosphere
12.5 Evolution of C4 Plants
12.6 The Impact of High Temperature
12.7 C4 Plants Are Tolerant to Salt Stress
12.8 Converting C3 Plants into C4 – A Himalayan Challenge
12.9 Carbonic Anhydrase
12.10 Phosphoenolpyruvate Carboxylase
12.11 Malate Dehydrogenase
12.12 Decarboxylating Enzymes
12.12.1 NAD/NADP-Malic Enzyme
12.12.2 Phosphoenolpyruvate Carboxykinase
12.13 Pyruvate Orthophosphate Dikinase
12.14 Regulation of C4 Photosynthetic Gene Expression
12.15 Use of C3 Orthologs of C4 Enzymes
12.16 Conclusions and Future Directions
Acknowledgment
References
Chapter 13 Expand the Survival Limits of Crop Plants Under Cold Climate Region
13.1 Introduction
13.2 Physiology of Cold Stress Tolerant Plants
13.3 Stress Perception and Signaling
13.4 Plant Survival Mechanism
13.5 Engineering Cold Stress Tolerance
13.6 Future Directions
Acknowledgment
References
Chapter 14 Arbuscular Mycorrhizal Fungi (AMF) and Climate-Smart Agriculture: Prospects and Challenges
14.1 Introduction
14.2 What Is Climate-Smart Agriculture?
14.3 AMF as a Tool to Practice Climate-Smart Agriculture
14.3.1 AMF in Increasing Productivity of Agricultural Systems
14.3.2 AMF-Induced Resilience in Crops to Climate Change
14.3.3 AMF-Mediated Mitigation of Climate Change
14.3.4 Agricultural Practices and AMF Symbiosis – Crop Rotations, Tillage, and Agrochemicals
14.3.5 AMF Symbiosis and Climate Change
14.3.6 Conclusions and Future Perspectives
Acknowledgment
References
Part 4 Plant Stress Under Climate Change: Molecular Insights
Chapter 15 Plant Stress and Climate Change: Molecular Insight
15.1 Introduction
15.2 Different Stress Factors and Climate Changes Effects in Plants
15.2.1 Water Stress
15.2.2 Temperature Stress
15.2.3 Salinity Stress
15.2.4 Ultraviolet (UV) Radiation Stress
15.2.5 Heavy Metal Stress
15.2.6 Air Pollution Stress
15.2.7 Climate Change
15.3 Plant Responses Against Stress
15.3.1 Water Stress Responses
15.3.2 Temperature Stress Responses
15.3.3 Salinity Stress Responses
15.3.4 Ultraviolet (UV) Radiation Stress
15.3.5 Heavy Metal Stress Responses
15.3.6 Air Pollution Stress Responses
15.3.7 Climate Change Responses
15.4 Conclusion
References
Chapter 16 Developing Stress-Tolerant Plants: Role of Small GTP Binding Proteins (RAB and RAN)
16.1 Introduction
16.2 A Brief Overview of GTP-Binding Proteins
16.3 Small GTP-Binding Proteins
16.3.1 RAB
16.3.2 RAN
16.4 Conclusions
Acknowledgments
References
Chapter 17 Biotechnological Strategies to Generate Climate-Smart Crops: Recent Advances and Way Forward
17.1 Introduction
17.2 Climate Change and Crop Yield
17.3 Effect of Climate Change on Crop Morpho-physiology, and Molecular Level
17.4 Plant Responses to Stress Conditions
17.5 Strategies to Combat Climate Change
17.5.1 Cultural and Conventional Methods
17.5.2 Multi-omics Approach
17.5.3 Biotechnological Approaches
17.6 Conclusion and Way Forward
Acknowledgments
Declaration of Interest Statement
References
Chapter 18 Receptor-Like Kinases and ROS Signaling: Critical Arms of Plant Response to Stress
18.1 Preamble
18.2 Climate Change: The Agent of Stress
18.3 Abiotic Stress: A Severe Threat by Itself and a Window of Opportunity for Biotic Stress Agents
18.4 Plant Receptor-Like Kinases (RLKs)
18.5 Receptor-Like Cytosolic Kinases
18.6 Why Are Receptor-Like Cytosolic Kinases Needed?
18.7 Receptor-Like Cytosolic Kinases in Plant Defense
18.8 Receptor-Like Cytosolic Kinases in Plant Development
18.9 Reactive Oxygen Species: Dual Role in Plants and Links to Receptor-Like Protein Kinases
18.10 Conclusion
References
Chapter 19 Phytohormones as a Novel Weapon in Management of Plant Stress Against Biotic Agents
19.1 Introduction
19.2 Phytohormones and Biotic Stress Management
19.2.1 Salicylic Acid
19.2.2 Jasmonic Acid (JA)
19.2.3 Ethylene (ET)
19.2.4 Abscisic Acid (ABA)
19.3 Phytohormone Mediated Cross-Talk in Plant Defense Under Biotic Stress
References
Chapter 20 Recent Perspectives of Drought Tolerance Traits: Physiology and Biochemistry
20.1 Introduction
20.2 Effects and Response During Drought Stress on Physiological and Biochemical Traits of Plants
20.3 Recent Advances in Drought Stress Tolerance
20.4 Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Rhizobacteria (PGPRs) in Drought Stress Tolerance
20.5 Genomic Level Approach in Drought Stress Tolerance
20.6 Conclusion
References
Chapter 21 Understanding the Role of Key Transcription Factors in Regulating Salinity Tolerance in Plants
21.1 Introduction
21.2 Transcription Factors Conferring Salinity Tolerance
21.2.1 APETALA2/Ethylene Responsive Factor
21.2.2 WRKY
21.2.3 Basic Helix-Loop-Helix
21.2.4 v-Myb Myeloblastosis Viral Oncogene Homolog
21.2.5 NAM (for no apical meristem), ATAF1 and 2, and CUC2 (for cup-shaped cotyledon)
21.2.6 Nuclear Factor-Y
21.2.7 Basic Leucine Zipper
21.3 Conclusion
References
Part 5 Stress Management Strategies for Sustainable Agriculture
Chapter 22 Seed Quality Assessment and Improvement Between Advancing Agriculture and Changing Environments
22.1 Introduction: A Seed’s Viewpoint on Climate Change
22.2 Assessing Seed Quality: Invasive and Non-invasive Techniques for Grain Testing
22.3 Improving Seed Quality: Optimizing Priming Techniques to Face the Challenges of Climate Changes
22.4 Understanding Seed Quality: Molecular Hallmarks and Experimental Models for Future Perspectives in Seed Technology
22.5 Conclusive Remarks
References
Chapter 23 CRISPR/Cas9 Genome Editing and Plant Stress Management
23.1 Introduction
23.2 CRISPR/Cas9
23.2.1 CRISPR Cas System
23.2.2 CRISPR Cas9
23.2.3 CRISPR/Cas9 Mechanism
23.2.4 CRISPR/Cas9 Types of Gene Editing
23.3 Construct of the CRISPR/Cas9
23.3.1 The gRNA
23.3.2 The Choice of Gene Regulatory Elements (GREs)
23.3.3 Multiplex CRISPR
23.4 Plant Genome Editing
23.4.1 Procedure
23.4.2 Plant Improvement Strategies Based on Genome Editing
23.5 Plant Stress
23.5.1 Plant Stress and Their Types
23.5.2 Plant Remedial Measures Toward Stress
23.6 Genome Editing for Plant Stress
23.6.1 Biotic Stress
23.6.2 Abiotic Stress
23.7 Elimination of CRISPR/Cas from the System After Genetic Editing
23.8 Prospects and Limitations
References
Chapter 24 Ethylene Mediates Plant-Beneficial Fungi Interaction That Leads to Increased Nutrient Uptake, Improved Physiological Attributes, and Enhanced Plant Tolerance Under Salinity Stress
24.1 Introduction
24.2 Plant Response Towards Salinity Stress
24.3 Plant–Fungal Interaction and the Mechanism of Plant Growth Promotion by Fungi
24.3.1 Nutrient Acquisition and Phytohormones Production
24.3.2 Activation of Systemic Resistance
24.3.3 Production of Siderophores
24.3.4 Production of Antibiotics and Secondary Metabolites
24.3.5 Protection to Biotic and Abiotic Stress
24.4 Fungi and Ethylene Production and Its Effects
24.5 Role and Mechanism of Ethylene in Salinity Stress Tolerance
24.6 Conclusion
References
Chapter 25 Role of Chemical Additives in Plant Salinity Stress Mitigation
25.1 Introduction
25.2 Types of Chemical Additives and Their Source
25.3 Application and Mechanism of Action
25.4 NO (Nitric Oxide) in Salt Stress Tolerance
25.5 Melatonin in Salt Stress Tolerance
25.6 Polyamines in Salt Stress Tolerance
25.7 Salicylic Acid (SA) in Salt Stress Tolerance
25.8 Ethylene in Salinity Stress Tolerance
25.9 Trehalose in Salinity Stress Tolerance
25.10 Kresoxim-Methyl (KM) in Salinity Stress Tolerance
25.11 Conclusion
References
Chapter 26 Role of Secondary Metabolites in Stress Management Under Changing Climate Conditions
26.1 Introduction
26.1.1 Types of Plant Secondary Metabolites
26.2 Biosynthesis of Plant Secondary Metabolites
26.2.1 Role of Secondary Metabolites in Mitigating Abiotic Stress
26.2.2 Secondary Metabolites in Drought Stress Mitigation
26.2.3 Secondary Metabolites in Mitigating Salinity Stress
26.2.4 Secondary Metabolites as UV Scavengers
26.3 Heavy Metal Stress and Secondary Metabolites
26.3.1 Role of Secondary Metabolites in Biotic Stress Mitigation
26.4 Counteradaptation of Insects Against Secondary Metabolites
26.5 Sustainable Crop Protection and Secondary Metabolites
26.6 Conclusion
References
Chapter 27 Osmolytes: Efficient Oxidative Stress-Busters in Plants
27.1 Introduction
27.1.1 Plant Health, Stress Factors, and Oxidative Stress and Its Markers
27.1.2 Modulators of Oxidative Stress Markers and Antioxidant Metabolism
27.2 Osmolytes – An Overview
27.2.1 Role of Major Osmolytes in Protection of Plants Against Oxidative Stress
27.3 Conclusion and Perspectives
References
Index
EULA