Geometry of toric varieties

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Résumé : Géométrie des variétés toriques Ce volume rassemble des textes issus de l'école d'été « Géométrie des variétés toriques » (Grenoble, 19 juin-7 juillet 2000). Ils reprennent, sous une forme plus détaillée, des cours et des exposés de séminaire des deuxième et troisième semaines de l'école, la première semaine ayant été consacrée à des cours introductifs. On trouvera dans l'article de D. Cox un panorama des travaux récents en géométrie torique et de leurs applications, qui met en perspective les autres textes du présent volume. Mots clefs : Variétés toriques Abstract: This volume gathers texts originated in the summer school ``Geometry of Toric Varieties'' (Grenoble, June 19-July 7, 2000). These are expanded versions of lectures delivered during the second and third weeks of the school, the first week having been devoted to introductory lectures. The paper by D. Cox is an overview of recent work in toric varieties and its applications, putting into perspective the other contributions of the present volume. Key words: Toric varieties Class. math. : 14M25 Table of Contents * D. A. Cox -- Update on toric geometry * W. Bruns and J. Gubeladze -- Semigroup algebras and discrete geometry * A. Craw and M. Reid -- How to calculate A-Hilb C3 * D. I. Dais -- Resolving 3-dimensional toric singularities * D. I. Dais -- Crepant resolutions of Gorenstein toric singularities and upper bound theorem * J. Hausen -- Producing good quotients by embedding into toric varieties * Y. Ito -- Special McKay correspondence * Y. Tschinkel -- Lectures on height zeta functions of toric varieties * J. A. Wiśniewski -- Toric Mori theory and Fano manifolds

Author(s): Michel Brion, Laurent Bonavero
Series: Séminaires et Congrès, 6
Publisher: Société Mathématique de France
Year: 2002

Language: English
Commentary: Found in: http://www.emis.de/journals/SC/2002/6/pdf
Pages: 275